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NATIONAL ADVISORY COMMITTEE FOR AERONAU’ITCS

TECHNICALNom! 3030

A METHOD FOR CAICUIATING THE SUBSONIC STEADY-STATE

IL)ADINGON AN AIRPLANE WITH A WING OF ARB13!RARY

PIAN FORM AND ST~NESS1

By W. L. Gray and K. M. Schenk

A method for computing the steady-state span load distribution on
an elastic airplane wing for specified drplane weights and load factors
is given. The method is based on a modification of the Weissinger
L-method and app13.esat subcritical.Mach nmibers. It includes the
effects of external.stores and fuselage on the spanwise loading. Modi-
fications are outlined for treating tail-boom and tailless airplane con-
figurations and for calculating the divergence dynamic pressure of a
swept wing with a large external’store. A method is also outlined for
reducing wind-tunnel data to obtain effective aerodynamic coefficients
which are free of nmdel flexibility effects. The effects of Mach num-
ber can resiiilybe evaluated from the aerodynamic coefficients thus “
obtained.

INTRODUCTION

The inclusion of the effects of flexibility in the solution of the
spanwise airload distribution applied to a wing of arbitrary plan form
and stiffness distribution has increased the complexity of analysis over
that for a rigid wing. The methods that are available at the present
time sre generaUy concerned with the calculation of loading on an iso-
lated flexible wing rather than the nmre practical case not only where
the effects of fuselage and nace12es on the spanwise loading must be
taken into account but also where the total lift on each of the major
components must be considered simultaneously in order to determine the
wing loading at a specified load factor. A method for including such
effects without recourse to iterative procedures for steady-state f13ght
conditions snd subcritical Mach numibersis presented in this paper. The

lBased on Boeing Airplane Company Ibcument No. D-10624,“A Matrix
Solution for the Subsonic Steady State Aeroelastic Loading on Airplanes”
by W. L. Gray and K. M. Schenk, June 1, 1951. Actiowledgement is made
to l&ssrs. Paul W. Harper and John B. Garvin of the NACA for extensive
work in editing and revising this document.

~--—- ——r
,,. .,, ,,

..— — -—— --

,. ,”,......} -- ........ ,.. , -.-., ..’’..’ .-. .



2 NACA TN 3030

equations are derived so that the spanwise airload distribution can be
expressed in matrix form in terms of influence coefficients for aero-
dynamic induction snd structural-deflectionin amanner similarto that
employed in reference 1.

The basic method is outlined in the body of the paper. Included
in appendi=s are details of the vsrious derivations, the expansion of
the basic equations to include fuselage interference and store load
effects, the tifications for tail-boom and tailless configurations,
a method for determining divergence dynamic pressures for swept wings
with large external stores, a method for reducing wind-tunnel data to
obtain effective aerodynamic coefficients which are free of model flexi-
bility effects, and a method for obtaining compressibility corrections.

SYMBOIS

The follmning symbols appear in the body of this report. Addi-
tional syoibolswhich appear only in the appendixes are defined as they
are introduced.

b

@JFO

% o

()
CLF ~

(%) a

c

E

w

El

GJ

wing span, in.

fuselage lift coefficient in presence of wing at q = O,
LF/@3

fuselage pitching-moment coefficient about ~fi point in
presence of wing at q = 0, %j~=

rate of change of fuselage lift coefficient with q j
per radian

rate of change of fuselage pitching-moment coefficient ,
with ~, per radian

local chord parallel to plane of symmetry, in.

wing mean geometric chord, in.

wing section pitching-moment coefficient

effective value of product of modulw of elasticity and
“wingsection beam bending moment of inertia, lb-in.2

effective tiue of product of shear nmdulus of elasticity
and wing section POW moment of inertia, lb-in.2

.,
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semispan of horseshoe vortex, in. ‘

airplsne rolling moment of inertia, lb-in.2

airplane pitching moment of inertia, I&in. 2

fuselage llft in presence of wing,
~@O + @_F)a~~S, lb

wing running lift per inch of span perpendicular to plane
of symmetry, lb/in.

fuselage pitthing moment about

wing,
[%

+
o

airplane rolling

elastic-airplane

E/k point in presence of

in-lb

rolling moment caused by unit aileron
deflection, in-lb

elastic-airplsne damping moment in roll caused by unit
wing-tip helix angle (pb/2V)l, in-lb

elastic-airplane rolling moment caused by unit ro~ng

~ ~celeration actm on the wing distributed
inertia, in-lb

elastic-airplane rolling moment caused by unit spoiler
deflection, in-lb

two-dimensional ldft-curve slope per radian, including com-
pressibility effects, for sections parallel to plane of
Syllmletry

airplane load factor, positive when inertia loa&s are downward

balancing tall load, positive upward, lb

airplane rolling velocity, radians/see

airplane rolling angular acceleration, radians/sec2

dynsmic pressure, 13/sq in., pV2/2

radial distance from vortex core, in.

wing area, sq in.



XA

%2

ag

%-

%3

NACA TN 3030

true free-stresm velocity, in./see

airplane gross weight, lb

wash veloci~ induced by line vortex at perpendicular dis-
tance r from vortex line, positive for downwash, in./see

downwash angle at three-quarter-chordpoint induced by
vortex system representing wing and its spanwise lift
distribution

streamwise distance from pitch reference axis to bound
portion of horseshoe vortex, positive when vortex is
to rear of pitch reference axis, in.

streamwise distance from pitch reference
positive when Efi line is to rear of
axis, in.

streamwise distance from pitch reference

axis to E/4 line,
pitch reference

axis to airplane
center of gravity, positive when center of gravi@-is to
rear of pitch reference axis, in.

.

streamwise distance from pitch reference axis to center of
pressure of balancing tail load, positive when center of
pressure is to rear of pitch reference axis, in.

lateral distance from wing center line, in.

final angle of attack of section zero-lift line with respect
to local free-stream direction, % +ag+aa, radians

(see fig. 1)

change in section angle of attack due to aerodynamic twists
and due to all structural twists associated with a flexi-
ble wing which are not accounted for by the ~ term,
radians (see fig. 1)

angle of attack of root-section zero-lift line, radians
(see fig. 1)

change in section sngle of attack due to wing lift distri-
bution acting on a flexible ~ a6 =

(
O for a rigid wing),

radians (see fig. 1)

strength of line vortex, in.2/sec

aileron deflection, radians

., .-—a,. ——. -. i
.,- —., . . .

“.. . -. . ..-., -.. .,,:
,, .’ ,.’.. . . . ,, ..:, .-..>+. ,:+7...,..,. ... . -. ,,.-=,, ,,.;...’,,+ .,,.“, ‘;.~ ,,.;
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as spoiler deflection

11 dimensionless spanwise station,
P
Y~

. .
e airplane pitching angular acceleration,positive for nose up,

radians/sec2

A local sweep angle of elastic axis, radians

44 equivalent local sweep angle including compressibility
effects, radians

P mass densi~ of anibientatmosphere, slugs/cu in.

(P
= 0.~4679 x 10-6 lb-sec2/in.4 at standard sea-

level conditions)

Matrix notation:

I’_l sqpare matrix, elements of which we designated by.use of
1--1 mibscripts; for example, element ~j is in ith row and

jth COIUIIIl

row matrix

{}

columa matrix

o

[1

diagonal matrix, which is a square rmtrix in which all
elements me zeros except those on the principal
diagonal an, ~, a33, . . . ~

[1
s~ aerodynamic-inductionor downwash matrix in which ele-

ments aij relate downwash angle at station i to

unit running lift at station j on wing

Cl
f%? elastici~ matrix in which elements aij relate changes

in streamwi.seangle of attack at station
running lift at station j on wing

i tolmit

c1
si fuselage image-vortex matrix relating image

effects at station control points to unit
(see appendix E)

downwash
running lifts

[1s: fuselage “overvelocity”matrix (see appendix E)



6

[1I

,

NACA TM 3030

identity matrix; that is, diagonal matrix in which
diagonal elements are equal to unity

PRESENTATION OF METHOD

Jh this section of the report the basic equations necessary to the
methd are outltied and discussed in a general way. Details of the
derivations are contiined in the various a~endixes.

Assumptions

In the development of the method certain assumptions that are
common to atifoil.theory apply, namely:

(1) The flow is potential; that is, boundary-layer effects, separa-
tion, and compressibility shocks are absent or

(2) The wing thickness is smlJ.

(3) A stagnation point exists at the wing

(4) The angles of attack a are smll so

negligible.

trailing edge.

that tana=stia=a
(where a is measured in radians) and cos a s 1.

(5) m tiag-load effects except those due to nacelles and stores
are neglected entirely in deterndninn the deformations of the wing used
in obtaining the equilibrium spanwise airload distribution.

With regard to the structure the following assumptions are made:

(1) Camber changes arising from twisting and bending of the ~
are neglected entirely.

(2) The elastic twist of the control surface is the same as that of
the adjoining wing structure.

(3) The =gles of structural deflection e are small so that
tane=sine=e (where e is.measured in radians) and cos El= 1.

(4) Although the angle-of-attack changes, including those due to
bending and torsional deformations of the wing, are accounted for in
the determination of the equilibrium spanwise airload distribution on
the wing, this f= atiload distribution is applied to the geometry of

.

the unreflected wing in computing the bending and torsional moments.

— . . . _ . . . . . ,_. .,-, $.. ,,. >, .,:,.- ... .,,-. ,-, -.. . J,-. ., --,. :.; .v-~ .—---
. . . . .,’. - .~. , :: .,-,,... . . . . . . . . : ... >....,’: , ,,,’’:>’a,..’.: “
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\
Basic Eqllfltions

.

.

the
symmetrical flight conditions.- The fundainentalproblem involved is
development of a series of equations which relate the spanwise lift

distribution for an arbitrary wi@ plan form in a given fli-@t condition
to the properties and attitudes of the individual sections that form the
-*

If the two-dimensionalwing is considered first, the following
relationships for lift and downwash behind an airfoil are available
from most stanikrd textbooks on aerodynamics:

z = Pvr

r
‘r=—

27rr

The circulation i’ is taken to be such that, at a
tance r behind the lifting line, the resultant of the
i~ Wr and the flight velocity V is

line; that is, no flow exists normal to
Then,

Wr
—=
v

‘%’

and from equations -(1)and (2),

%bstitutingequation (5) into equation

~ c/2
wr=— —

27c r

parallel to the

(1)

(2)

(3)

specified dis-
downwash veloc-
section zero-LLft

the zero-lift line at this petit.

c

(3) results in

%eV

(4)

(5)

(6)

.V— —. ~.— -.—z

.! . . . . . . . . . .

—

. .

. .
., .,, ,

,.. .’.. . . . . .. ..-’ ,.. ,,
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(7)

% c/2 ~ equa-
In order to satis~ eqyation (4), the expression — —

2YC r

tion (7) must be eqyal to 1.0. Since the theoretical section two-
dimensional lift-curve slope is eqwl to 2Yr, r must equal c/2, which
is the distance between the lifting line and the three-quarter-chord
point.

~ the development of the method presented in this report, equa-
tion (7)is always used in the form

This shplification reqyires that the section

the two-dimensional value (i.e., the value of
an unswept two-dimensionalwing) and that the
control point D (see fig. 2) be one-half of
to the rear of the quarter-chordpoint, or at

(8)

lift-curve slope ~ be

the lift-curve slope for
location of the downwash
the local streamwise chord
3c/4.

The essential difference between a two-dimensionalwing and a wing
of finite aspect ratio srises from the nonuniform spanwise loading w~ch
produces the trailing vortices of the finite-aspect-ratiowing. The
equations presented thus fsr are considered to apply to the finite-
aspect-ratio wing when the effects of all the vortices, both bound and
trailing, have been taken into account.

lkpation (8) timatrix”form is

(9)

TMs matrix relation represents a series of equations, each applicable
to a particular station on the semispan of the wing. The values of

()

w
v 3c/4’

every one of which is affected by the bound and trailing
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vortices at all of the wing stations, can be evaluated from

{}

~
[]{}

.-Lsl r
v 3c/4 4flv

which, in conibtiationwith equation (l), results in

(lo)

The [1s~ matrix in these eqyations is the aerodynamic-inductionor

downwash matrix which is derived in appendix A.

Combining equations (9)

or

o

and (10) @VeS

o

[L&p}‘{-}

(SL)

(12)

The series of equations represented by the matrix equation (I-2)expresses,
for any given dynamic pressure, the relationship between the spanwise

vsriation of running lift {Z}, the final section angles
-(}of attack ~ J

and the spanwise variation o’fthe
o

slope &] . The effects of wing

through the elements of the [1sl

is expressed in the general form

two-dimensional section lift-curve

plan-form geometry are accounted for

matrix. The section lift-curve slope

~ rather than Zh to permit stisti-

tution of actual values when available from scaled-model tests or to
permit correction for compressibili~ effects as described in appendix A.
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The final angle-of-attack variation across the span af
{1

can be

considered to be composed of three essential parts (see fig. 1)

(13)

For a wing free of
{}

exbemal stores, the angle of attack as caused

by structural deflection of a flexible wing due to the section lifts
acting at the section aerodynamic centers is linearly re~ted to the

~trix [Z) by an expression deriw ~ appe~ B as

\

{~} = E?zm
The wing geometry and stiffness are accounted

(14)

for in the structural-

deflection matrix
c1S2”

This matrix is based on loadings associated

with stations which are parallel to the a&plane plane of symmetry. In
a swept w@, however, the structure is usually arranged such that the
wing boxes are formed between stations approximately perpendicular to
the elastic axis. D order to obtain a closer representation of the

loadings and deflections on this actual wing, an [%]
1 matrti was also

derived (see appendix B) and may be substituted for the [q Iuatrtiin

equation (14) when desirable.

The
{}ag

matrix of equation (13), as described in detail in

appendix C, is composed of built-h twist, a~arent or aerodynamic twists
such as those due to interference, contiol deflection, and an@hr veloc-
ities, and all structural twists of an elastic wing which are not accounted

for in the
{}as

matiix.

Although equation (12) is perfectly general, it is not useful in
the form given for dete.mdning the lift distribution on a flexible wing

{1
since a component of the q matrix is itself a function of the lift.

{1
Eas is therefore expressed as in equation (14), equations (12)
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and (13) my be combined so as to express
flexible wing in terms of wing root angle

of the
{1a13

twists as

or

l-l

the load distribution on a
of attack and any c~tnation

o--

(15)

(16)

Design conditions, however, sxe usually specified in terms of gross
weight and load factor rather than root angle’of attack. ‘I@ inclusion
of these two additional independent variables requires two additional
equations. By considering that the airplane mustbe h equilibriums
regards vertical forces and pitching moments, the two additional equa-
tions maybe written as

for equilibrium of vertical forces

Ply-nW=O (17)

and.

(18)

for equilibrium of pitchhg moments about the pitch axis.

Equations (16), (17), and (18) are the basic equations for a

flexible-wing airplane.
{}

mey maybe solved simultaneously for Z ,

~, and PT as functions of any design values of speed, gross weight,

and load factor. Equation (16) as written applies to symetric~ flight

conditions, but by substitution of an antisymnetrical S1
[1

matrix

(see appendix A) it is then applicable to unsymmetrical fltght COm-
tions which are considered in greater detail under the following sec-
tion heading.
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(17), and (18) can be altered as shown in the fol-
lowing paragraphs to include (a) the effects of forces on the fuselage,
(b) the effects of external stores by the method derived in appendix D,
and (c) the interference effects on the exposed-wing loading due to the
presence of the fuselage by the method derived in appendix E.

b connection with forces on the fuselage (item (a)), the lift and
moment characteristics of the fuselage in the presence of the wing are
assumed to be lmown. The lift and pitching m&ent of the fuselag; my
then be written with smll error as

loads and nose-up nmnents are
may be appropriately included

(19)

(20)

considered positive.
in equtions (16),

in which fuselage up
This lift and moment
(17),and (18)to get the following more complete set of equations
(see fig. 2):

For the wing load distribution,

for the s,ummtion of vertical forces,

(a)

(22)
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and for the sumation of pitching moments,

‘H{’}++(%)a-4%)J%+%=
(23)

The twist term PT@} appearing in equation (21) has been included

at this point to provide for the possibility that tail loads may enter
the wing at some point along the span, as for a tail-boom type of con-

figuration, for instance. !Ehis PT@} contribution is otherwise con-

sidered to be zero. A method for handling the tail-boom type of airplane
as well as the case of the tailless airplane is described in a~en~ F.

In considering the effects of the external stores (alteration (b)),
as in the case of the fuselage, the lift and moment characteristics of
the
the

dix

stores in the presence OF &e wing are assumml to be known so that
lift and moment canbe gitienby expressions similar to equations (19)
(20) for the fuselage.

The lift-distribution equation for the store case derived in appen-
D, with the ~ term included as before for generality, is

L

--

1] {}in which the matrices A and B relate an

the elastic wing to the store lift and

two parts so that the part that varies

be introduced on the left-hand side of

to that for the [%] matrix.

moment.

with the

(24)

a8 type of twist of

lQEb3twist is handled in

span loading {2} may

the eqwtion in a mnn=’~arallel

.—.— —~~ ..- ~ --- y-- ---
,, T. . ... . . . ,>,. . . . . .. . . . . ..’

..~.’.’ ,., ‘./ ., . . .. .../
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vertical-force and pitching-nmment eqwtions (22) and (23) are
to include store lift and mo~t in a manner similar to that
the fuselage lift and moment were previously included. h the
introduced in appendix D these equations for one or more stores

for summation of vertical forces and

(25)

( %’)
SF c ~wr - (@~w)a~r +p@T . 2qL2hc2J@} -

for smmation of pitching moments. In these
is the store index whi@h, for any particular

values as there me stores on the semispan.

which gives the angle of attack of the store

eqyations the subscript n
configumtion, has as many “

The matrix notation J_llj

is defined in appendix D.

The third and final alteration (item (c)) to be considered in con-
nection with equatio~ (16), (17), and (18) is the change in span load
distribution of the exposed wing due to the presence of the fuselage.
This interference effect is derived in a~endix E. The over-all ~elage-
interference effect is considered to be composed of two parts. The first
is that due to the -e vortex system within the fuselage which is
required to satis& the condition of zero velocity normal to and at the
fuselage surface. This condition is satisfied by adding a correcting

—,. —.7 , .

;.. , .,, -= :,-, . . . . . . .-, . . . . . . . . . . . . . . .
,, .,, .,,

-., . .. ”., ‘
~ .“. , ., .’. ----. ?. ‘. ,-

.
. . . .. ..” .“. .-. . .,
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[1
Si [1matrix (see appendix E) to the S1 downwash matrix. The second

part of the effect is the increment in vertical velocities over the
exposed wing due to the presence of the fuselage at an angle of attack.

This effect is calculated as an interference twist of the {’} type

and is expressed as a function of fuselage angle of attack times the

~] (“overvelQcity”matrix o . See appendix E.) The lift distribution

(eq. (21)) when altered to include these fuselage-interferenceeffects
becomes

10 — -

(27)

o
.-

where the elements of the ISo I matrti give the increments in vertical
L -J

velocities along the span.

The calculation of these fuselage effects would not be required if
appropriate data were available tiom tid-tunnel tests of a scaled model
of the mibject airplane. A method of deterdning these and other aero-
-C Msts as welJ-as the applicable values of section lift-curve
slope from appropriate wind-tunnel data is given in appendix G. The
method utilizes equation (12) to obtain aerodynamic coefficients which
sre free of model wing flexibility effects and which are therefore appli-
cable to the full-scale airplane having a w$ng flexibili@ different from
that of the model.

Unsymmetrical flight conditions.- In addition to the symmetrical
flight conditions already outlined, a nmiber of unsymmetrical flight
conditions are usually investigated in structural design. Among the
conditions which may readily be investigated by the methods of this
report sre those which arise through the use of roll-productig devices
such as ailerons or spoilers. The load distributions on an elastic wing
associated with roll-control deflectioti may be thought of as the suma-
tion of distributions from the following specific loadhgs:

—- .- _____ __ .,.—.,.. .- y--,r :<----2- —— .—— .

.. . . . . . . . . . . . . . . . . .’ -.”.,, ,-”~:.
,, . ..-.

,, .,,.,, ~. .-..’.. .,, >-. . . ... .. . :<.,-’ . . . -
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(1) The symmetrical.orpre-roll loading which existed prior to the
deflection of the roll-producing device.

(2) ‘I!heincremental loading resulting from the deflection of the
rolJ-producing device.

(3)The incremental loading associated with a constant rolling
velociw tith no roll-control deflection, which is us- described
as the damping-in-roll loading.

(4)The incremental loading caused by the rold-ingangular accelera-
tion. This loading results from the structur+ twists {~} of the

elastic wing when the rolling acceleration i acts on the wing mass
distribution (see appendix C). Note that the resulting aerodynamic
rolMng moment wilJ generally be in the same direction as the applied
ro~g acceleration.

Three flight rolXng conditions will be used to outkl.nethe pro-
cedure for determining unsymmetrical.loadings on the ~. These
rolling conditions are:

(a) Steady roll at some specified value ofwing-tip helix angle pb/2V
with no rolling acceleration

(b) Roll initiation resulting from the instantaneous deflection of
the roll-control device to the angle required to obtain the specified
value of pb/2V but with no rolling velocity

(c) Roll termination, that is, control surfaces deflected in
oppositionto the steady rolJlng velocity pb/2V

Steady roll: In a steady-roll condition the span load distribution
for t~ elastic wing is givenby the sumnation of the first three loadings
enumerated.

The distribution obtained for the first, or pre-rolJ.,loadi~l,is
described in detail in the section “Symmetrical flight conditions.
Equations (16), (17), and (18) or their appropriate equivalents are
used together with the symmetrical ~sl] matrix of appendix A.

The distribution of loading and its associated rolling moment RI

‘r %.. resulting from a unit antisymmetrical deflection ~al or 5s1

of the-~oll-controldetice are obtained from equation (16),the antisym-

metrical matrix [1S1
{}

of appendix A, ad the appropriate ag matriceH

which give the aerodynamic and stictural twists resulting from a unit

deflection of the roll-control device. These f~l mtrices can be

writtenin terms of control-surface deflection ;y ~he method described
in appendix F or by means of data from wind-tunnel tests, if available.
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similarly,

as~ociated with

the distribution of

a unit value of the

obtained from equation (16) and the

17

loading and the damping moment ~
PI

wing-tip helix angle (pb/2V)l are

antisymetrical Fsll matrix. The
L —A

{} af3 values in this case vary linearly and antisynmetrically across the

span from (pb/2V)1 at one tip to -(pb/2V)l at the other.

These unit load distributions associated with bal or 5s1 and

(P@Ol ~t then be sc~ed w or don accord- to - amo~t of con-

trol deflection ba or 56 required to give the desired value of pb/2V.

The deflection reqyired is obtained from the equation of equilibrium of
the atrplane in roll as

%1 * %P,
5
ar=al 2V (pb/2V)1

(28a)

or

%1 ,;—= —
%Pl

(28b)
o 5s1 2V (pb/2V)1

where the rolling moment produced by the control deflection balances
the rolling moment due to damping in roll in the steady specified rolling
condition.

just
load

After the unit load distributions have been scaled in the manner
described, they may be added to the pre-roll loading to obtain the
distribution for the specified steady-roll condition.

Ih this outline the assumption of equal and opposite roll-control
deflections is made. If, as is mre generally the case, uneqyal deflec-
tions of the ailerons or spoilers are involved, the span loading must be
determined in a slightly different way. To illustrate the procedure, a
spoiler deflection on only one w@ may be considered to be equivalent
to a symmetrical and an antisymmetrical deflection with an amplitude
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equal to half of the spoiler deflection 6=/2. The antisymmetrical

deflection results in a gain in lift on one wing which is exactly bal-
anced by a loss in lift on the other wing so that a rolling moment Is
produced without a change in the over-all wing lift. The symmetrical
deflection, however, results in a change in total wing lift, and hence
load factor, with no rolling moment. In order to compensate for this
change, both the vertical-force and the pitching-moment balance equa-
tions must be introduced so that the wing load distribution associated
with the change in ~ required to compensate for the change in tail

load canbe determined. Adding the syrmnetricaland unsymmetrical loading
distributions will give the proper lift distribution for the wing with
a single spoiler deflection 5s.

Differentially operated ailerons might be considered in a mmner
similar to that outlined for the spoiler. A further extension to include
the conibtieddeflection of both ailerons and spoilers can also be made
in the same way bymaldng use of the proper spoiler-to-ailerongearing
ratio.

Roll initiation: In the roll-initiation condition where no rolling
veloci~ is assumed to exist, all the listed loadings occur except that
due to damp- in roll.

Since the control deflection (ba or 5s) will alreadybe known

from the steady-roll condition, the problem is to determine the initial
rolling a.ngdsr acceleration ~ for.instantaneous control deflection.
The procedure involved is first to find the wing spsmise airload dis-
tribution and its ro-g moment ~. due to a unit rolIl@g angular

P1
acceleration il. The values of ~.

P1
depend on the wing mass and

stiffness distributions as well as wing aerodynamics. The values we
obtained from equation (16), or its equivalent, for antisymmetric f~ght.
With the value of ~=

PI
known, the desired angular acceleration ~ is

then foundby solving =he following equation
in roll:

of motion for the airplane

(2%)
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or

19

IX %“PI—. —

(29b)

386.4 31

where the moments are given in inch-pounds. The value of ~ obtained
from equation (29) is then used to scale the loadings previously found
for the unit rolklng acceleration to the correct value. .

Roll termination: ~ the roll-temination condition, the airplane
is assumed to be rolJ_ingwith a wing-tip helix angle pb/2V and the
roll-control device is moved abruptly in a direction such aE to reduce
the rolling velocity to zero. As in the roll-initiation condition, the
desired airplane rolXng acceleration is obtained from the equation
expressing the equilibrium of the airload and fiertia-load rolding
moments, which for aileron control is

386.4 Al

The airloads on the wing are those caused by the pre-rolJ.condition
plus the airlosds from aileron deflection, dmping in roll.,and rolling
acceleration. The inertia loads are those arising from the pre-roll
condition plus the effects of the rolling acceleration S.

DISCUSSION

The method outlined in this report not only includes several previ-
ously omitted items which are of practical interest in the design of a
wing for aeroelastic effects but also is sufficiently extensive in scope
that almost any type of airplane configurationmay be considered. Because
of its length, however, the method is better adapted to the determination
of loads on a specific airplane rather than to preliminary design stwiies
of several configurations.

--,------ .—-—. —.-, , ,, ——-.—.-—:—y~zn .. —.: .—— —

.“.. ’.. ,..’
.- .,-., “,. ’.” ;. ..,, ., . . .. . .

. ...- .,-,
..’. .: -, ..- ,.
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Matrti fornmlation of the problem has particular merit for such a
general treatment since discontinuities in angles .or.massesdue to either “
special aerodynamic or structural features can readily be included. ‘It
also permits future improvements to be made to the details of the separate
appendixes without essentially modifying the method which has been outlined.
ti fact, throughout the paper it is possible that the engineer would modify
the method to suit his own needs and draw from the appendixes whatever mate-
rial would be reqdred to investigate the problem at hand. In such a modi-
fication he would of necessity consider the relati= merits of ease in com-
putation against the accuracy both of the method and of the data available.

For these reasons, only a few general guides which might be considered
for successful application of the method are given.

For ~ equal to 2x, equation (12) will give essentially the
same results as those given by the Weissinger L-method of reference 2
which is valid for wings of arbitrary plan form and hating flat-plate,
circular-src, or parabolically cambered airfoil sections (refs. 3, 4,
.andS). The method would be expected to @ve the mst accurate results
when applicable values of ~ are known, such as those obtainable by
the method of appendix G for instante, since in general the fuselage,
flaps, and external stores will affect the applicable values of ~.
i% fact, equivalent values of my of the aerodynamic parameters as
obtdried from experimentQ data by the method of appendix G are pre-
ferable to purely theoretical values and may easily be incorporated.

The treatment of compressibility effects used in this report,
wherein each wing section is permitted to have its own compressibility
correction, differs from the Prandtl-Glauert method in that the wing
plan form is not distorted; instead, the angles of attack are altered
as indicated by equation (U.). The treatment adopted has the merit of
considerable saving in time for equal or better accuracy since only
one

R
1 matrix is required for all Mach numbers. The methods of

obtai compressible values of ~ are described in appendixes A
smd G.

With regard to the nuniberand selection of the horseshoe vortices
to be used to represent span loading, it is s~ested that the horse-
shoes be chosen nsrrower over that portion of the span where large gradi-
ents in loading are expected, that is, near the ends of control surfaces,
near large changes h sweep, and at the wing tips. At least two vortices
should be used with eachllcontrolsurface and a minimum of seven per semi-
span is su~ested for a clean” wing.

With regard to the structural parameters EI and GJ required, it
may be stated that equivalent values which include the stiffnesses con-
tributed by the leading- and trailing-edge structure should be used in
preference to the usually conservative values employed in the structural
analysis of the wing for shear and bending stresses.



NACA ‘II?3030 Zl

In the desi~ of a simple Wi.ng-fuseMge contdnation without exLernal
stores or nacelles, it is necessary to study and apply the results of

only appendixes A, B, C, and E which describe the pg) @], md ag
{}

matrices as well as the fuselage-interferenceeffects. Effects of store
and nacelle loads and moments on the wi@ load distribution are covered
in appendix D. Appendix F outlines the modifications required to adapt
the method to the determination of wing loads on flexible tailless and
tail-boom airplane configurations. Appendix G indicates a procedure for
obtaining equivalent values of section LLft-cue slopes, effective com-
pressible section sweep angles, and interference twists from wind-tunnel
tests of,models which~ notbe scaled correctly for flexibili~. Appen-
dix H deals with the determination of the divergence dynamic pressure of a
swept-wing a~lane with a large external store. !I!heproblem of divergence
normally does not occur with a swept wing except that the attachment of
a iarge external store may cause it to diverge. The determination of
the divergence dynamic pressure is the only case in this paper which
req@res iterative procedures.

Boeing Airplane Company,
Seattle, Wash., July 8, 1953.

.
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API?ENDJXA

AERODYNAMIC ~!c&GS

The
[1‘1

Matrix

The purpose of this appendix is to explain, in simplified form, the
aerodynamics involved in and the steps necessary for the computation of

the downwash mtrix c1s~ and to develop the correction for compressi-

bility used in this report.

The lift or cticulation distribution which varies along the span
of a wing can be visualized as resulting from a system of horseshoe
vortices, each of which is of constant strength. Such a system of
horseshoes is iJIlustratedin the following sketches, in which double
arrows are used.to indicate that the sense of circulation sround each
line-vortex segnent is givenby the right-hand rule:

Actual airload

r
curve

Approximation to
actual loading
given by horseshoe
vortices

the
as
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It is obvious from the sketches that the shape of the actual load
distribution may be approximated to any practical degree of accuracy by
a suitable change in the nuuiberof horseshoes, each of constant strength.
The point of importsmce is that the net strength of the trafling vortex
at any point on the span of the wing is numerically equal to the rate
of change of strength of the bound vortex in the spanwise direction.
The strength of the trailing vortices would therefore be greater for
those portions of the wing span over which the more rapid changes in
the spanwise airload distribution occur.

Results of theoretical investigations have shown that little loss
in accuracy with respect to the spanwise atiload distribution will be
entailed if:

(1) The total strength of the chordwise system of bound vortices
is concentrated in one bound vortex located at the local streamwise
quarter-chord point.

(2) The down=h angle at each vortex station across the span of
the wing, at a point one-half of the local streamwise chord downstream
of the bound vortex, is equal to the geometric angle of attack. Herein-
after, this point is referred to as the downwash control point D.

The downwash angle at any such control point D is therefore the
total induced downwash velocity at that point, normal to the plane of
the wing and causedby the complete system of bound and trailing vortices,
dividedby the flight velocity of the wing.

It shouldbe mentioned that the condition described in paragraph (2)
is true as written only
slope euual to %. As
appendix,
following
different

the condition
form when the
from ~:

for airfoils having a two-dimensional Mft-curve
is @iscussed in a subsequent section of this
described in paragraph (2) is modified to the
section two-dimensional Hft-curve slope is

()w %

7
3c/4

‘Zaf
(Al)

The downwash velodity at a petit due to a single horseshoe which
is composed of a bound vortex and its associated pair of trailing vortices
is known to be proportional to the strength of the circulation of that
horseshoe and, therefore, proportional to the running lift on that por-
tion of wing span representedby the bound vortex of that horseshoe. The
downwash angle at any one downwash control point thus is the sum of the
incremental downwash angles due to each of the horseshoes in the system
of horseshoes which represent the wing and its lift distribution.
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Within the Imitations which accrue from the use of a limited number
of horseshoe vortices to represent a wing, the elements with which to
solve the following problem are now available: .

Given the geometry of a wing plan form, the angle-of-attack varia-
tion, and the section two-dimensional.lift-curve-slopevariation across
the span, determine the spanwise airload distribution. The unlmowns
sre, of course, the values of the ~@ ~ at each of seve~l po~ts
on the span. A necessary condition to the determination of these unknowns
is that ‘u many independ-=t equations be available as there are unknowns.
This condition canbe fuEilled if the angle of attack is known at each
of the wing stations for which the loading is to be determined.

It is obvious that, M the strength of eadh bound vortex represents
the average airload over its own portion of the wtng span, good accuracy
will be obtaimed if the values of the running load, as determined from
the solution of the s~taneous equations, are considered to be valid
at the midspan point of each bound vortex. l?heshape and distribution
of the continuously varying airload curve is then obtained by fairing
a curve through all of the points thus obtained, with the restriction
that the loading must drop to zero at the wing tip.

?& method for determining the [Sd ~~~”is ~w i~~t~ted for

a typical wing shown in the following sketch, which includes a system
of horseshoe vortices and associated downwash control potits:

IT
~,}72 Typical

\Tmiling vortices
extend to infinity

v

.,-Leading edge

“LOCUS of downwash control
points at 3c/4

-..—-
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In actual practice it will usually be necessary to me a larger number
of horseshoes to represent,the wing. Four per semispan are used in
the following presentation for convenience only. The following typical
information is available at each spanwise station”:

The section lift-curve slopes (in two-d.imensionzQflow) at sta-
tions q=ql, ~, . . . are ~=ml,~, . ... . The singlesof attack

of the section zero-lift line at stations q = VI> ~) “ “ “ are

Since a linear relationship exists

particular horseshoe vortex ‘j and the

between the strength I’j of a

aownwash velocity wit at a

puticq point i on the wing plan form due to that hmse~be vortex,
the following general equation canbe written:

where K is a constant.

then causes the following
to 8:

‘ij = “Kij‘j (f@

A particular horseshoe vortex, such as rly

values of d.ownwashveloci~ at control points 1

‘EL = %.A ’51 = %lrl 1
‘a = ‘arl ’61 = K61rl

1

(A3)
W31 = K31h Wm s ~rl

’41 = zlrl ‘a = ‘81r1 1
Similar relationships exist between r2, !?3,. ..r8 and the control

points I to 8, that is,

’12 ‘K12r2 ’22
=K=r2 . . . . .

’82 = ‘82r2
1

. . . . . . . . . J . . . . . . . . . . I

‘18= %8r8 ‘28= K28r8 “ “ “ “ “ ‘88= K88r8
J

(A4)

— . - .,— —_.. T —. .— —-- --v -. —————— —- ———.

,,,’ ,’ ..,, .4
.. .. . .’ - .’ . . . . . . ,.
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If the horseshoes
of the wing plan form,
typical wing sketched:

K31 =%8

K41 = ’58

%1= ’48

% = ’38

’71 = %8 ,

’81 = ’18

axe
the

symmetrical with
following values

KM .

%2=

K32 =

K42 =

32=

%2 =

Kp =

K82 =

Further, for symmetrical
possible to obtain a spanwise
with respect to the plan-form

’87

K~

%7

%7

K47

’37

%27

%7

K13 =

%23 =

’33 =

K43 =

K53 =

%3 =

Kv =

K83 =

respect to the center line
of K are equal for the

K%

’76

%56

%6

KM

’36

%6

’16

%4 =K@-

%24 = K75

K34 =%5

Ku = %5

~ = K45

~ = K35

K74 =%5

K& = %5

(A5)

.

.

zero yaw it is always
atiload distribution which is unsymmetrical
center line as the sum of two airload dis-

tributions, one of which is symmetrical and the ot~er of which is antisym-
metrical with respect to the plan-form center line; for example,

u
— — —— —— —— .—

4i

————.—e .
-—.. .—

,. T.-

:,. ,- ~ ~ ,., ./ , . . . . . . . . . . . . . . . . ,,,

. . . . . . . . . .$.--’.;’. .. ”,:..,- ,, =”---- ,’ ,”.
,.-. . ,.:.:.’’..-~.... ‘ ,,... .. .. .. . .. ,--,.. -’. .’ .,.’! d -.,...”.. “,-...-’””-
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At each spanwise station the S co~onent is that due to the symmetrical
distribution of load, the A component is that due to the antisyunetrical
distribution, and the U component represents the algebraic sum of the
S and A components, that is, the unsymmetrical distribution of load
across the span. This division offers a considerable reduction in the
amount of work required in that, for either symmetrical or unsymmetrical
flight conditions, airload distributions needbe determined on only one-
half of the wing, provided, of course,
sign of the circulations existing over

For a

and for an

symmetrical distribution of

‘1
= r8

r2 = r7

antisymetrical distribution

‘1
= -r8

‘2 = -r7

The total downwash velocity at aby
downwash-velocity contributions at that
of the horseshoe vortices in the system
is,

that praper account is taken of the
the other half of the wing.

airload aver the span

‘3
= r6

r4 s r5

of ah-load

‘3
= -r6

r4 s -r5

(A6)

(A7)

control point is the sum of the
point that are inducedby each
that represents the wing; that

‘1 ~+ww+w=W 13 + ’14 + ’15 + ’16 + ’17+ ’18 1
=W

‘2 21+w22 + ’23 + ’24 + ’25 + ’26 + ’27 + ’28

I

(A8)

. . .“ . .

J

----- . n--- . .. .. -m -.. ~.~--.
——. — —-

.,~.. . . ..- .’.’ ”.. ‘. ,.
..4 -..”- ,.- .’. ~....’, . ..<. ......
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If the equation for the downwash velocity at control point 1 is
expanded as an example, the result is

%’f? + %L8r8

Alternatively, by use of the relations in equation (A5), equation (A9)
csn be written as

K&r7+ K8~r8 (Ale)

In case a symmetrical airload condition is being investigated, sub-
stituting equations (A6) into eqyation (A9) results in

r4(K14+ @ (All)

For an antisynmetrical airload distribution, substituting equations (A7)
into equation (A9) res~ts in

r4(%4 - %5) (A12)

“

(A9)
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.

For the typical horseshoe system assumed, the complete series of
equations relating downwash velocities to the-circulations are:

For a symnetricsl airload distribution,

wl~ = rl(% + KIJ + r2(% + %7) + r3(K13 + @ +

r4(%4 + %J

W2 .
s Mb + a + %(%2 + %7) + r3(K23+ @ +

‘4(%24+ ’25)

‘3s = W31+ K3d + ‘2(K32 + ’37) + ‘3(K33 + K36) +

r4(K34 + %5)

‘4s = rI(K41+ K4~ + r2(K42+ K47) + r3(K43+ KM) +

r4(K~ + K4~

and for an antisynmetrical airload distribution,

A = ‘1(% -w~ K~6) +@ + rp(~ - %7) + r3(%3 -

r4(K14- %5)

~ = ‘d% - %28) + ‘2(%2 - %7) + ‘3(%3 - %~ +W2

r4(K24 - %$

‘3A ‘ M31 - ’38) + ‘2 (K32 - ’37) + ‘3(K33 - K36~ +

r4(K34 - K35)

WA = ‘1(K41 - ’48) + ‘2(K42 - K47) + r3(K43 - K46) +

r4(K44 - K45)

“(A13)

‘(AI-4)

.. ..—. . .. —-,-——— ——,. ——-.. —..——~--r——-————-———————
., ,... :~r, .. . . . . .> ..,. ,,. ..’1 .,, --” -’.’. -... >..., -:. ,-
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Ihxn equation (Al), which expresses
between the downwash angle w/V at each

NACA TN 3030

the relationship that must exist
control point, the wing angle .

of attack ~, and the section lift-curve slope ~ for the wing station

at the control point, the following series of equations result, where,
typically, W1 represents either w

%
or WI :

A

If

or

‘1 %% ‘3 43—=— —=—
v% vat

‘2 % ‘4 ‘4U4.=— .=—
v211 Vti

i

ku= 4YC(Kn* ’18)

. . . . .

(A15).

k = 41& * KR) (KL6)

where the upper sign is used for symmetrical airloads, the lower sign
is used for antisynmetrical airloads, and the subscripts L and R in
eqution (~6) mean left and right wing, respectively, then substitution
of eqxation (u6) into equations (Q4) gives

4Ycw~= kurl + kur2 + k13r3+ k14r41
41rw2= ~rl + ~r2 + %3r3 + %4r4

I

(A17)
4m3 ‘ ‘31r1+ ‘32r2+ ‘33r3+ ‘~~
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The relation between the running load Z and the cticulation is

(JU8)

and the equation relating dynamic pressure to mass density and true
airspeed is

fl= pV72 (Alg)

following final system of linear equations:

.

(A20)

—.—..——-. ..— —_ _ .-,—. -~-— ~=. -. ,.. —-———,, . ..~... .... --- : , .. . .. . ,C.,.
. . . . . . . . . . . . . . . . . .. . .. . . . .
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Equations (A20)
for each station can

NACA TN 3030

can now be written in matrix form. The equation
be written as

J-L

(Ml)

Equations (A@ and therefore equations (A20) can be expressed in the
general form

n

1
k .2 . kqmiai
iJ j (i=l,2,3, . ..n)

j=l
(A22)

In matrix notation equation (A22) becomes

m’] = [!a{~}
where

%%2 %23

[il
s =

k31 ’32 ’33

1-’41 ’42 k43 1
’14

%4

k34

k~

(A23)

(A24)

_.. —,. ,,. ”,. .. . . .
., ,T,—-— —— -

., -.., -.. . ..:- ;. ..,, .,,, ,.“.. .:’’:..- .,.’,. .-. . . . . . . . .. . .. . . . .,., . . . . . . . .: .,-..,,, .. . . . . . . . .. ,.
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The development

PJix=i}=
1
kwpl

(A25)

(A26)

J

of the steps necesssry to compute the kij elements

in the
[]
s~ or “downwash” matrti follow. As a first step the relation

which exists between the strength of a segment of a straight-line vortex
and the induced velocity at a nearby point should be found. If the
strength of the vortex (whose sense is given by the right-hand rule for
moments) is r, the velocity induced at the point P can be written as

r(cOs a - Cos p)
Wp = (A27)

kti

where a and ~ sre the angles between the direction of the vofiex seg-
ment and lines joining the ends of the segment to the point as shown in
the sketch

r. in2/S8C

Equation (A27) is used in the sfisequent derivation of the S1
[1

matrix.

- - ----- --- —-–-—..——— . ,— —————— ———-—-—. ~— --,- -—- —— , . —.‘.. .-, ,., ,- .~’,-., . . . . . ,. -,,.
, .-”.,:.’! ,- .
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A plan view of the
left-hand wing is given

IUICATM 3030

geometry of a typical horseshoe vortex on the
in the following sketch, in which distances and

angles are co~idered positive.aa indicated and”the sense of the circu-
lation of the elements of the horseshoe vortex is givenby the right-
hand moment rule:

—

~ F ‘y -

Vortices of strengthj
r extend to infinity

I

Iv

Dimension
reference point

These dimensions are
those of the actual
wing plan form

The points V and D are a typical horseshoe reference point and a
typical control point, respectively.

The incremental downwash velocities induced by a single horseshoe
wnwash velocities are considered aa positive, w?e:VO??teX,if do

.
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(1) For the left-hand trailing vortex the relations

R = -(%-4

a= 0° Cos CL = 1

f3=2700-e cos p = -SiII e

are substituted into the general relation

to obtain the incremental

I?(cosa - cos f3)
‘L =

411R

downwash velocity

r(l+ sine)
wL=-

4YC~y- h)

(2) IYomthe right-hand trailing vortex where

.

R=sy+h

a=90°- fi cos a = sin $

P = 1/33° Cos p = -1

the incremental downwash velocity is

r(tm@+ I)
‘R =

4fi(sY+ h)

35

(A28)

(A29)

~A30)

- -.,—----—— 7--- - -r — —.-— m——— ——— -————. . .
..’, ,’ :--- . . . . . . . ...”. . ..”.” ,,. . ..’.

.. :.,,. ... .
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(3) mom the bound vortex where

R=sx

a= 1800 - e cos a = -COS e

P = 1830 -~ Cos p = -Cos @

the incremental downwash velocity is

The
complete

r(COS @ - cos e)
wB =

4Y’CSX
(A31)

total duwnwash veloci~ at a typical control point due to a
single horseshoe is then

w =W+WR+W
L B

r

(

l+stie +l+sinp+
=—.
41r

‘Y-h
sy+h

Substitution of the identities

Sx cos e

%-h= she

+h*sxcos@

‘Y
sin g

into equation (A32) yields

.

cos $ - cos e

‘x ) (A32) .

r

(

l+sfi@ l+sine
w=—

4YCSX Cos @ - Cos e )

(A33)

-— ..-. —,~—..-. ,:. —-—- —-,
,“. .’. , :., .. . .. . . . . ‘---- ,.,/. .-. .;..,. ..; .

. . . ., .”, -,. . ...” .... ... ,,.,..,”.:- . . . :,- .,. ..-. .,+ ,.,, ,
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Equtions (A34) and (A2) me identic~; therefore)

Kij =

If, as indicated

1 (1+ sin fifij1+ Sineij

4*s%j C08 gii Cos Elij)
in the sketch

Typical horseshoe ~-+Y -1- -y -i

I

37

hferenc6 point,
t

,/

Sj(

4

c
\

control point

“+~

rR

(A35)

the control points are assumed to be located on the left semispan of
the ~ so tk.t 9L _ ~ represent the pefi@nt -es for a

horseshoe located on the lefi semi$p~ @ eR ti ~ represent the

pertinent angles for the corresponding horseshoe on the right semisp~j
then for a typical control point

% (1 l+sin@L
=—
4YCSX Cos ~

1 r+Sinfi$
KR=—

4fisx Cos ~

.----, -—. -. ———. . . ,- ,,.: ..,. .. . . . . ... . ..
. . . . . . . . . .. . . .

)l+stioL

cos eL

)l+sineR

Cos ~-1 (A36)

—....——.——-—————-——-—,. -,.. . . . .. . .. .,.. , .. . . . .,.



~om equation @L6),

k = 4X(KL t KR)

so that in the [1s~ or downwash utrix each element k is computed

from the equation

(ll+sinfi l+sine~ l+sin~ )1 + sin eR
k =— ~

Cos & -
T

8X eos eL Cos & cos eR
(A37)

As in equation (u6), the upper sign is to be used for symmetrical span-
wise airload distributions, and the lower sign is to be used for anti-
symetrical spanwise airload distributions. Note that in equation (A31t)

- xv

sinjif=

~pb -%)x”(2+ yD-yv+h)2

, YD -yv+h

r

\ (% - +)2+ (y”- Yv + h)2

i~ - %)2+(y” - Yv - h)2

YD -Yv-h
cos e =

k“ - %)2+(y”- Yv - h)p

.
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The
[1
S1 matrix therefore is computed from the matrix equation

p+sin~

[1 [(

l+sineL l+sin~

]

l+8tieR
Sl=z ~

Cos & - cos eL Cos ~ + cos eR

where the upper sign is used for symmetric flight conditions snd
lower sign is used for antisynmetrical conditions.

(A38)

the

Since the
[J
s~ matrix is used in equation (A23),which is

Isl{’1 = Gil{~}
the elements of the.

[1
S1 matrti are seen to be influence coefficients

relating the incremental downwash angle at each control point to the
intensity of the running lift over each increment of the semispan of the
wing. In general.,all the elements in the principal diagonal of the

[1
s~ matrix will always be positive snd those elements not in the

principal diagonal.wil.lalways be negative because the velocities were
considered as positive downward and wash velocities from a horseshoe
vortex are downward only in the region behind the bound vortex and
between the trailing vortices of that horseshoe.

Compressibility Corrections

The method by which compressibility effects are handled in this
report is based on simple sweep theory. This theory is presented in
references 6 to.8 and substantiated in references 9 to ~. Summarized
briefly, infinite-aspect-ratiosweep theory indicates that compressi-
bi~ty effects me functions of the effective Mach number & which
in this case is the Mach nuniberof the stresm velocity component that
is normal to the leading edge, so that the Eft-curve slope in com-
pressible flow is givenby

‘=& (A39)

—.. — ...~y .,- —. —. —... . ./., ,. -—, .,.. - . . .. . ... . ... .. . . .
.’ -.. . ---- .,

.,,. ., .-’,. . .-
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where
.

In section Lift-curve slope at M = O

M stream kh number

4M effective sweep angle for compressibility effects or yaw
amgle of infinite wing, radians

l!hesame relationship exists for the effects of Mach number on
section pitching-moment coefficient

C’=& (A40)

Compressibility effects on a finite-aspect-ratio swept wing canbe
handled in a similar fashion. For the finite-aspect-ratio swept wing,
however, recognition shouldbe given to the fact that compressibility
effects will vary across the span of the wing. b general, smaller
values of the effective sweep angle are indicated for the wing root and
tip sections than for the midsemispan region. Even in the midsemispan
region the effective sweep angles for compressibility effects are not
functions of the wing plan-form geometry alone; the spanwise variations
of csniber,thickness ratio, chordwise thictiess distribution, and angle
of attack are likewise involved in the determination of the value for
the local effective sweep angles.

Consider equation (7) for the downwash angle induced at a distance r
rearward of the lifting line which was derived from two-dimensional
considerations

Wz=moc—.
v aa~

This eqpation expresses the relation between the downwash angle at the
three-qusrter-chordpoint (i.e., at r = c/2) and the geometric angle
of attack w when the section Hft-curve slope is equal.to its theo-
retical value %.

Several approaches can nowbe made to the compressibilityproblem
regting the values of lift-curve slope, the angles of attack, and the
location of control points to be utilized for equating downwash angle
to geometric angle of attack. h the method used in this paper the

,., . ... . ;.- -——~ ,,, , .—— ,.r -—-.,.:,;..- ... .. J. >.-,.
.-’ -.,, . . . . . ,, J. :.. $...>. . . . . . ,. :, .

. .

. . . ,. !---- “., ,. . . . .:,.,.’ .“.
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distance r is always equsl to one-half of the local stresmwise
so that in matrix notation equation (7) reduces to (see eq. (9))

41

chord,

The applicable values of ~ to be used in this equation sre those
at the effective -h nmiber ~ = M cos ~, and thus each wing station

is permitted to have its own compressibility corrections. In the absence
of test data reduced according to the method of appendix G, a value of
~ canbe calculated from equation (A39) for a~ue of ~ eq~to

the geometric sweep angle of the plan-form streamwise quarter-chord Mne.
Although, in general, this procedue will yield only an approximation
to the correct theoretical value, this value will usuallybe sufficiently
accurate for prel~ design purposes when A/cosA is large (where
A is the aspect ratio) or M cos A is small, or both.

‘15is“modified angle of attack” method is characteristicaUy dif-
ferent from the “plan form distortion” methods of handling conpessi-
bility effects (refs. 13 and 14); the former distorts the angle at the
original three-quarter-chordpoint, whereas the latter stretches the
half-chord distance.

An important advantage in the compressibility-correctionmethod
presented in this paper is that only one ~~ matrix need recomputed,
whereas a different ~fl mat- foreach~hmeris requiredin
the plan-fornwlistortionmethod.

The following developments show the equivalence of these two methods
of accounting for compressibility effects. The first comparison is for
the case of an infinite wing in yaw.

If AM is the sweep or yaw angle for this infinite wing, then
according to the plan-form-. tistofiionproced~e (ificated by the SUb-
script pd) the equivalent wing in incompressible flow (M = O) is to
be at a yaw @e such that

Further, the LMt-cuxve slope of this equivalent wipg in incompressible

flow, titiplled by the factor l/~1=, is equal.to the lift—curve
slope of the original wing in compressible flow.

-——.. ..-. ,.——. —— ...— -. —-. — —~– ——- ..—= .- —.- —————.—. .,. -.”. ,,. , ,..
. ,,. .

,: .’. .



42 NACA !L”iV3030

The LLft equation for the equivalent l.hchnumber method of this
paper (ticatedby the subscript ~) is

k=q=
& Cos &

and that according to the plan-form-distortion theory is

.

fi order for
true for any

L-pa= qca
2X Cos &

G-

the two lifts to be equal, the following equallty must be
value of M.

Cos .

It can be shown that such is ‘thecase by the use of elementary trigo-
nometric identities.

The next comparison is for the case with zero sweepback. The plan-
form-distortionmethod stretches the half-chord distance as a function
of lkch number to

c’ c—=.

2 2&
which when substituted for r in equation (3) gives

r&--iF
w=

Y’rc

.,
“
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E~tiW
section angle

the downwash angle
of attack gives

43

at the stretched control point to the

(A41)

The compressible lift-curve slope (ref. 1!) is

‘=* (Ak2)

Equations (A41) and (A42) maybe substituted into equation (2) to give

or

-1= pvr

For the
angle at the

compressibi~ty-effects method of this paper the downwash
three-quarter-chord

co&ected for effects of section

()

w =
~ 3c/4

point equated to th~ ‘@e of attack
~ft-curve slope is (see eq. (8))

r %
~~—= —

Jccv

from which

%e 2r=—
qcv

(A3)

When equation (A43)is mibstitutedinto eqpation(2)the same final
answer is obtained:

-1‘ pm-’

The identities of compressibility correctio~ in the case of either
the unyawed (~= O) infinite wing or the yawed (AM# O) infinite ~
substantiates, at least qualitatively,the use of the compressibility
correction methods as presented in this paper.
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.
.APPENDIX B

TEEELASTICITY -~ [s2J ~ ~2 ~

Thepurpose of this appendix is to explainz in brief form, the
structural theory involved in and the steps necessary for the conqnrta-

tion of the elastici~ matrices [1 c1S2 and S2’ .

Development of the [1S2 Matrix

In the development of the duwnwash mtrix [1‘1 in appendtiA, a

conttiuously varying spanwise airload distribtiion was replaced by a
series of constant-intensityrunning loads, each of which covers an
increment of the wing semispan. This concept of an equivalent system
of loads is also used in this appendix.

Consider the geometry of the structural skeleton of the wing to be
as represented in figure 3, in which double arrows indicate that the
right-hand rule of moments-applies. The notation in figure 3 is defined
as follows:

L1,~)=.c% tctal Mf’t

+,..

from the

el) e2j . ● . en

‘lY ‘2} “ “ “ ‘n

streamwise

of incrementof wing having span of 2h1,

. 21@ respectively, nmibered inboard

left wing tip, lb (see eq. (Bl))

distance from horseshoe reference point
at a wing station to elastic axis at the s&e
station, positive when elastic-sxis point is to
rear of horseshoe reference point, in.

streamwise distance from elastic-axis reference
point at a station to elastic-axis reference
point at the next inboard station, positive when
inboard elastic-axis point is formrd of outboard
elastic-tis point

Wteral distance between elastic-axis point at a
station smd elastic-sxis point at the next station
inboard

local sweepback angle of elastic axis



IVMA TN 3030

%1Y~7”””~
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rolling moment at elastic-axis point around longi-
tudinal axis through local elastic-tis reference
point due to total lift of all the vortices out-
board of this point, positive when it raises left
wing tip, in-lb

pitching moment at elastic-tis point around lateral
axis through local elastic-axis reference point
due to total lift of all the vortices outboard of
this point, positive when nose up, in-lb

besm bending moment at elastic-sxis point about an
axis perpendicular to local.elastic sxis, positive
when it puts compression in wing upper surface,
in-~ (see eq. (B2))

torsional moment around elastic axis at local
elastic-axis point, Positive when it is in direc-
tion of leadi& e~e- up, in-lb (see eq. (B3))

The general form for the wing lift is

h = %Zn (Bl)

where Zn is the intensity of the running lift at station ~ measured

in pounds per inch and ~ is the span of the horseshoe vortex at

station ~; the general form for the bending nmment is

and the general form for the torsional moment is

Tn=qncos&+M@n~

(B2)

(B3)

---- -— .—.——,—- —._. _._. -,- ---- —.:------ —-—_ —
-,$,

—— . .._

. . .
., .,. , ..:.
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At station 1, on the center line of the horseshoe vortex nearest the
left wing tip (see figs. 3 and 4), the fol-1- eqvatio~ apply:

Which, when mibstituted into equations (B2) and (B3), yield

(
hl el sin Al

Ml=%
4cos A1- 2 )

el cos Al
T1 = L1

2

At station 2, on the center line of the second horseshoe vortex
inboar& of the left wing tip,

(M)

(B5)

(B6)

(B7)

(B8)

(B9)

— ,-, —— ..7 .

. . : .:>...... ;. ..,..,

,-
./

. .
——-

. , . . . . . . .‘.’ .----- -’, .,. ,,.’,7.. -’ -- ..-. .: .-. . ,-. , . . . . .
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and eqwtions (B2) and (B3) become

47

At station 3,

(B12)%3 ( )+ L2d2+5p‘Lldl+d2

%3 (‘Llel-fl -f2)+L2F2-f2 +:%-y% (B’3)
‘( )

and, similJ3rly,

Lkk2-f2&3+L3+-e3s:5
Cos

)

‘+2 -f+”%+% “ c:%

(B14)

. .. —- ——.~. ~ - —..,—. ~—. ~,, . ————--———– .— —-....,..., .,, . . . .. ., *.,..,. ., ’..,!.,
,, .,,’ . . .. ,., -. ., ..:.. ..:,” . ...,’.. “-. : .
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Equations similar to
the remaining stations on

NACA TN 3030

these cu be developed for M and T for
the left semispan of the wing.

In algebraic form, the equations for ~ and Tn are

(B16)

Notice that the first two terms in each of these equations are equal
to zero when n = 1, that is, for the tip station.

In matrix notation, equations (B16) and (B17) become

(B18)

(B19)

. ~—.,-. .,, ,. +... .1 .’.’,: ., ..-.”. .,
-->- —.—. -, ,,

.. >...: . . ..’.-.-.. . ..”. ., ..”. . .‘. .. . . . .... t., .
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where

:OSAl

o

0

0

.

●

~inAl

o

0

0

.

.

.-

{3T =

{}
L=

o

Cos &

o

0

.

.

0

sin 4

0

0

.

.

[1
Tl

T2

T3

il

H
%%
%5

i

o

0

Cos 9
0

.

●

o

0

Sfn %
o
.

●

o

0

0

C!os *

●

.

0

0

0

sin ~

.
●

.

.

●

✎

✎

✎

✎

✎

●

✎

●

●

.

.

.

.

..

.
—

.

.

. .

.

.

.

(B20)

(B23)

(B24)

. . -. —.— _____ ...__,.. ,—-—----- _. ..>..... ,.J. ,. .-, . .
—— —— _... . .

.,? .. .,.-. ... “, ..’ ,,-
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..
.,~
‘1. ,

1,,.

:1

o 0

el - fl o

el - f~ - f2 ‘2 - f2

el -fl-f2-f3 ‘2- f2-f3

.

●

o

. .

. .
.

.

●

o

0

.

.

0

0

0

‘3 - ‘3

‘3- f3-f4

.

.

0

0

0

%4A4 eta
—-
4-24 2

%

.

.

0

0

0

0

eh - fb

.

.

0

0

0

0

0

0

0

0

0

.

.

*-3+2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

●

✎

✎

✎

✎

✎

✎

✎

u
o

(B25)

(226)
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‘i

“i’..\
.,.. .

,’

. .

,,.,

.,
\

,’:f
‘:;l:.,,.‘.

,,‘“l
I

[1
r2 =

\

e7

2tm Al

‘1

dl+~

dl+~+d3

o

e2

2 tan*

%2

d2+a~

~+d5+d4

.

.

0.

0

2tant5

d3

d3 + dL

●

.

0

0

0

e4

2t’m A4

0

0

0

0

eK

●

✎

●

✎

.

.

.

.

.

.

●

,

.

.

(B27)

Equations (B18) and (B19) provide the means for congnrtingthe bending and torsional moments,
along the span ot the wing due to the”loads L as given by equation (Bl).

Each of t% loads, Z or L, however, is affected by the variation in amgle of attack from
root to tip. This pdoblem is handledby computing the streamwise angle-of-attack change ~

due to the structural deformations causedby the series of loads {L]. Since a streamwise angle-

of-attack change is required, as~e that a unit positive pitching moment ~ (nose-up moment)

iB applied in turn at each of the points 1, 2, . . . n on the elastic axis. The unit pitching
moment is in the plane in which ~ is to be measured and its direction agrees with the posi-

tive sense of ~.

U
P

I
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The streamwise angle-of-attack change can then be obtained by
applying the general rehtion (see ref. 15)

m

(B28)

desired streamwise angle-of-attack change due to values of
bending moments M W torsional mxnents T along elastic

axis of wing resulting from the series of loads {L]

beam bending moment per unit pitching moment applied at sta-
tion at which q. is to be determined

t torsional moment around elastic axis per unit pitching
moment

ds increment along elastic axis

El effective beam bending stiffness around the axis of the bending
moments M and m

GJ effective torsional stiffness around the @s of the torsional
moments T and t

The stations on the wing for which the angle-of-attack changes ~

are to be computed are those on the center line of each horseshoe vortex.

It is assumed that sufficient accuraq in the results will be
obtained by using the values of bending moment M and torsional
moment T obtained by means of equations (B18) and (B19) and that these
values of M and T msy be considered to be constant over the incre-
ments of the wing span corresponding to the span (2h) of each horseshoe
vortex.

Values of EI and GJ are also assumed to be constant over each
such increment in wing span, and the values to be used are the effective
values which correspond to the wing station ~ at the midpoint of each
horseshoe vortex.

The general relation (eq. (B28)) can be used to express ~ in

matrix form by letting
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sweepback angle of elastic axis at station %J rtians

besm bending moment at station ~ due to loads {L} on win~

torsional moment around elastic aXiS at station ~ due to

loads {L] on wing

beam bending moment at station i per unit pitching moment
applied at station j

torsional moment around elastic axis at station i per unit
pitching moment applied at station j

2hn

Cos ~

horseshoe span at station ~

angle-of-attack change at station ~ due to au the
r-i

loads ~L~ on wing

Then, for station 1,

[

RLl%%l ‘%21%h2 %lW#Il
a81 s

(EI)l COSA1+ (@2 cos~
+. ..+ 1+(EI)n cos ~

[

tUT1hl 2t21T2% %l%?n

(GJ)l cos Al + (H)2 cos &
+. ..+ 1(B29)

(GJ)nCos &

for station 2,
—

[

%2%%
%2 =

(EI)lcos Al

and so forth.

%2%2!2 , %2%Al
+ (EI)2 cos ~ “ “ “ + (EI)n cos ~ +

%$2%2 + 2tWTn~
+

1“ + (GJ)n Cos ~
(B30)

(GJ)2 Cos A2 “ “
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‘lRromthe geometry of the problem, when pofit i fs at or ~omd
of point j, the bending moment due to a unit pitching moment applied at
point j is

+tj
= -sin ~

when point i is outboard of point j, the bending moment is

%j=o

(B3h)

(B31b)

when point i is at or inboard of point j, the torsional moment due to
a unit pitching moment applied at point j is

‘ij
= Cos ~ (B32a)

and when point i is outboard of point j, the torsional moment is

.

tij = 0 (B32b)

I

and the complete series of equations for as, of which eqyations (B29)

and (B30) are representative exmples, can be written in matrix form as

‘&} = cm.1[+][~{”1+ ctl[+][j{’]
(B33)

- >—. ...~.-~. ,-, :.-’. ?T;. ., .,.,. . ,..::.
.,-. . ‘?.. .. ..-’ ~, . :...,,.,/.,...,. . . . .. . . ‘--.: .”,’ r, ’.-

-, . . . . . . . . . . . .. . . ‘>. -. ----.,. . >.. ‘ ‘.’ :...’. -+ .:.,- > ., .,, . . .
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Typical elements in [m] and Et] are

o

0

0

.

●

08 A~2

o

0

0

●

.

-Sti ~

-sin ~/2

o

0

.

.

Cos &

Cos A-@

o

0

.

.

-Stn 5
-sin &j

-Sti A3/2

o

.

.

Cos 9

Cos 9

Cos A3/2

o

.

.

-sin A&

-sin q

-sin $

-Sti AJJ2

●

●

Cos $

Cos ~
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✎

✎
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✎
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✎

●

●
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✎

✎

●

✎
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✎

✎

✎

✎

✎

Wbstitutim equations (Bl), (B18), and (B19) into equation (B33)
gives

L
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If .

[

[’d = c“l[-][jyd !lEq - Eg mi] +

then

Equation (B37) represents

each element a~q of this

&}= Ho}

+J

the most general form

matrix represents the

(B38)

for the
[1s~ matrix,

angle-of-attack change

in radians at station i due to the structural deflection of the wing

[1
caused by a unit loading at station j. In effect, the S2 matrix is
an array of influence coefficients

t
and the elements of this matrix may

be computed according to equation B37), or, when an actual wing is avail-
able, they may be obtained by load-deflection tests of that wing.

Development of the Auxiliary EMstici@l@trix
c1
‘2 ‘

The [1s~ mtrix as defined in the previous section considers air-

loads outboard of each specified station, as definedby a stresmwise cut
through the wing box. Inasmuch as ribs aze conventionally installed in
a plane essentially normal to the elastic axis, the spar-box loads are
more correctly determined by considering the airloads outboard of a plane
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normal to the elastic axis. These loadings are represented in the fol-
lowing sketch:

The corrective loading is then the 1o- obtained by mibtracting

the loading of @ from that of @) . The triangular areas @ and @

represent the corrective loading. It wiJlbe noticed that the loading

over the area @ is the negative of the loading of the corresponding

area in @ and the loading over @ is the positive of the corresponding

area ti@. In order to obtain these corrective loadings, it willbe

necessary to assume a distribution of pressure over the corrective areas.

The equations are now developed that represent the shear, wing
moment, and wing torsion due to the corrective loadings, and the

[1
S2 matrix is modified to include these effects. A plan view of the

leftwing is shown in figure 5, where

E local angle between elastic
to A, the sweep angle of

L local angle between leading

axis and lateral axis equal
the elastic axis

edge and lateral Ws

T local angle between trailing edge and lateral axis

The correction terms formment, shear, and torsion due to wing

airload in the
[1
S2 m.trik are
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correction to rolling
around longitudinal

NACATN 3030

moment at e~tic-axis point
axis through local elastic-axis

reference point, positive when it raises left wing
tip, in-lb

.
correction to pitching moment at elastic-axis point
around lateral.axis through local elmtic-axis
reference point, positive when nose up, in-lb

correction
about an
positive
surface,

correction

to wing bending moment at elastic-axis point
axis perpendicular‘to local elastic axis,
when it puts compression in wing upper
in-lb (see eq. (B39))

to torsional moment around elastic axis at
local elastic-axis point, positive when it is in d~ec-
tion of leading edge up, in-lb (see eq. (BkO))

correction to local shear, positive up, lb

The wing bending moment ~ is

and the wing torsional.moment ~ is

(B39)

(B40)

Assumed pressure distribtiion.-

over the corrective area8 is assumed
eqution for a thin flat plate .

The distribution of pressure p

to be given by the two-dimensional.

and modified to account for the actual value of
the modified form, the distribution of pressure
square inch) along a streamwise chord becomes

r

22 1-:
P= --: —

x/c

.

(B41)

local runninglift. In
(measured in pounds per

.

(B42)



59NACA TM 3030

where x/c is
leading edge.

the fraction of the stresmwise chord to the rear of the
The ratio Z/c is assumed to be constant so that the llnes

of constant pressure radiate from the origin O in figure 5. ~ accord.
ante with the assumptions previously given concerning the corrective
loadings, the pressures are negative (downward) over area l?EG and posi-
tive (upward) over area AM.

A polar coordinate system (p,(l)is selected, and the shear, moment,
and torsion due to the pressures on area OFB will be subtracted from
the shear, moment, and torsion due to the pressures on area OllA. Lties
Of e = Constant are lines of constant pressure and p will be a func-
tion of e only.

From the geometry of figure 5, P may %e expressed - a ~ction
Of e bY ~ithg

c+~Mtan T-x= = tan(L - e)

Hence
.

x= rc+~tan T-tan(L - ejl (M3)

and

or

1-

c+=tan T=?ii tan

m= c

tan L-tan T

cdddng eqwtioti (B43) ti (1344)yiel~

-1

L

I
tanT-

1
tan(L - e)

x= cl+

L tan L-tan!J! J

If equstion (1345)is substituted tito eq~tion (W2) ~

‘=’- .’

where

(B45)

(E-K)

.

(B47)

.
--- .—— - —7. Y T-~— -— .—.

. .

. , - -—--7—— -—-——— ‘— ‘————
... . ;.. ,”’,. ,.

,-. , ,,,,-, . . . ., ,, .’... . . . . . -’,‘.. ,
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Rolling-moment correction at station n, an. - The romng-moment

correction at station n, AMxn, is obtained by adding the rolling

moment Al&A due to area OFB to the rolling mment -B due to

area ODA (fig. 5).

The ro~~ moment *A due to area Ol?B may be found by writing
the equation for the elementary moment about ~ for any value of p
between O and that at the lime ~ as:

%. r 1=pfi-pcos(L -f3)pdpdf3
-A L d

The equation of the &e ~ is

. p COS(L - 0) = =

or the value of ‘p at the line FM is

—
OM

P =
COS(L - 0)

Over area OFB the moment is negati’ve;hence,

J
m

‘-
pdp+

0

rL-TK
tan(L - 9) - tan T co~(L

\

/

Since f3 varies between O and L - T, the titegr~ can be eva@ated

by letting

tan L- tan(L - e)

tan L -tan T

tm(L-e)-tm T

tan L - tan(L - e)

= sin%

= cot2u

1

(B48)
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It follows that

d(L -

Consequently,

e) = -2(tan L - tam T)COS2(L - e)sti u Cos u dU

J

fl/2
-K@i?(tan L - tan T) COS2U au +

o

r

/2
=m3(aL-tiT) COS2U dU
3 0

61

sK~#(tan L - tan T)
’12

~;2
(B49)

‘-6(ti L-tan T)2

The rolling moment *B due to

simil.ermanner to get

fW-T

%KB= KO~
Ji

tan(L-e)-tan T

o
tan L- tan(L - e)

area ODA may be derived in a

R

r

cos L-e-E)
de pap-

0

K H tan(L-e) --&T J
cos(L-e-E) a

COS(L - e)de
tan L- tan(L - e)

p dp
o

0
(B50)

where

(B51)R=
= COS(E - T)

+ c(1 - e)sin E
cos T



62 NACA TN 3030

After integration this equation simplified to

YCKO-iiZ(tmL - tan T)

w~ =
h(tan L + cot E)2sti%~~

YrxR3(tanL - tan T)(4 - 3&)

24(t& L + cot E)3sin%~~

where

Q2 =
tan L-tan T

(O~Q2 <l)

Eqwtions (B49) and
moment correction ~n

tan L + cot E.

(B52) may now be combined to give the rolJ.ing-
at station n:

.

1YCK6CR2(1- Q2)(tan L+ cot E)sin E - R3(4 - 3@)(tan L - tan T)
=—
24

~~3(tan L+ cot E)3s~E -
.

2C3 1

(tan L-t~T)21

If U defined in equations (B48) is written as

U=l+ COS(E - T)COS L

sin E sin(L - T)

.

.

(B53)
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and if

63

.

v =tan L+cot E

then R (see eq. (B>l)) becomes

R= C(u - ~)sin E

(B5S)

(B56)

rZC2 6(u - ~)2(1- Q2) - (U - 6)3(4- 3Q2)Q2 2
%n=~

1
-~

(B57)
v2(l - Q2)3/2

For the special
parallel to the

L d

case of the untapered wing where the leading edge is
trailing edge or T = L,

& Sti2EC0132L (862 -
wxn=—— 4E+ 1)

ti COS2(E - L)
(B58)

Pitching-moment correction at station n, AMyn.- The incremental

pitching-moment corrections due to the areas OJ?B and ODA may be
derived and combined in a manner similsx to that for the rolU.ng-moment
corrections and.the equation for AMyn becomes

win=
{.

~c2 Q2(U - e)3 ~4 -x2)tan L- Q%]+ 6(1- Q2)(U- c)2(cQ%-ti L)

12 @(l - Q2)3/2

1(6E-1)VQ2-2 tsa L

*

For the special case of the untapered wing where the leading edge is
psrallel to the trailing edge or T = L,

(B59)

%n=+%&- 4e+ 1)
sin E COS L

[

2-

1

sinEcosLtanL
(B60)

COS(E - L) COS(E - L)

-——-_—-.— . ...— —.. ~,,. ,—._ . . ~.. — - ..—.. . . .,,. ,’”, ‘-~ ... .,.
-.. .

.-. . . . . ..--., .,
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shear correction at station n, ASn.- The elementary shear is
.

%= PP@dO (B61)

From this equation the incremental shears over the areas OFB and
ODA msy also be derived and cotiined in a manner shnilar to that for
the rolling moment to give

For the special case of the untapered wing where
parallel to the trailing edge or T = L,

(B62)

the leading edge is

(B63)Nn=.-Es~EcosL(4e- 1)
k cOS(E - L)

Modification of
[1
S2 matrix.- The

U
S2 mtrix is nmdified by

using the corrective rolling and pitc@ng equations. Using the equations

q=~-%+~-~ (B65)

and letting (from eqs. (B57) and (B59))

p = -Al@

d
J=-* 1

(B66)

(B67) -
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results in

65

or, in matrix form (with ~ ~ ~),

Equation (B18) thus becomes

and equation (B19) becomes

L

m corrected fom of the rS21

[1t
o

~iJ]1——
GJ

—
—

[“l[a - il I
—

matrix thus becomes

(B68)

(1369)

(B70)

(B71)

1

(B72)
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where, as in equation (B38),

(B73)

It should be noted that, because of the assumed pressure distribu-
tion given by equation (ml), this correction does not correctly handle
conditions involving deflected flaps and roll-control devices.
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APPENDIX c

COMPUTATION OF
{1%

MM!RICES

This appenMX outlines the method by which the component parts of

{a
the a matrices may be deterndned. The

{}at3
matrices comprise two

classes of twist: (1) those which would be present even if the wing were
rigid and (II) those due to tiertia effects, thrust or drag, and section
pitching moments on the flexible wing. A given airplane design conUtion
may obviously require w combination of the twists listed under classes I
and II, that is,

{%}= Fg}l + Fan
(cl)

For simplicity, the sources of {1~ maybes mmarized as follows:.

Class I - aerodynamic twists (i.e., zero-lXft-line shifts due to
effects other than wing structural &f lections)

(a) Built-in twist due to cmiber or construction, or both.

(b) Interferericetwist due to fuselage, external stores, and
SO forth.

(c) Twist due to flap deflection.

(d) Twist due to aileron deflection.

(e) Twist due to spoiler deflection.

(f) Apparent twist due to airplane rolling velocity.

(d Apparent ~st due to -me pit~w v~locitY= W- of
attack due to airplane pitching velocity should be measured at 3c/4.

classII - structural twists due to wing deflections caused by the
following inertia and aerodynamic loadings which are independent of the
wing lift distribution:

(a) Vertical acceleration acting Wn dry-wing dead weight,
wing internal-fuel dead weight, and external-stores dead weight.

(b) Effect of airplane rolling acceleration upon dry-wing dead
weight, ~ internal-fuel dead weight, and external-stores dead
weight ●

---- .—. — ..—= —-—— ~ ..-——- .-.,, . ... . . . . —. —
. .,:.’’.::’,. “;, ,,. , ,,,- .,. ,,

,.- ‘.. ..’ ..-”. . . . .
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(c) Effect of airplane pitching
dead weight, wing internal-fuel dead
dead weight.

acceleration upon dry-wing
weight, and external-stores

(d) External-stores thrust or drag.

(e) Section pitching-moment coefficient with flaps, ailerons,
spoilers, and so forth in neutral position.

(f) Incremental section pitching-moment coefficient due to flap
deflection, aileron deflection, or spoiler deflection, or in vsrious
combinations.

Of the class Itwists, the aerodynamic built-in twist is known from
the wing geometry and the characteristics of the profiles used, and the
interference twist maybe obtained from actual tests of the complete air-
plane configuration, either model ur full-sc~e~ by ~~g the procedwe
of appenti G or from other calculation methods. Twists due to control
deflection are determinable from the same type of tests as were used to
evaluate the interference twist. Apparent twists due to airplane rolling
snd pitching velocities are completely determined when the airplane flight
condition to be investigated is specified.

The type of twists due to the effects of wing deflections arising
from loads which are independent of wing angle of attack, such as those
listed under class II, maybe computed with the aid of equation (B33)

since, in this case, [94={%],
(C2)

‘iere @iiw El ‘e ‘he- be- ‘oments‘d ‘he‘orsions‘ow
the wing elastic sxis due to the loadings of class II or to any combina-
tion of them.

Although the
[1ag

twists do not all explicitly require the cal-

culation of loa&@&, \hey do influence the equilibrium airload and must
be accounted for in determining the net wing loads from equations (22-),
(22), and (23).
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APPENDIX D

DERIVATION OF EXPEIW&sToRE MNCRICES

The term external stores as used in this report is intended to apply
to such items as nacelles, external fuel tanks, bombs, rockets, and
similar items connnonlyattached to the wings of airplanes.

In this appendix the lift coefficients and pitching-moment coeffi-
cients for each external store in the presence of the rest of the air-
plane configuration are assumed to be known ad to vary linearly with
angle of attack. On this basis a set of linear equations is developed
in which the airloads on each external store are accounted for in com-
puting the deflections of and airloads on the ehstic wing or airplane.
The coefficients used are based on the airpkne wing area and the wing
mean aerodynamic chord. There is a specific lateral reference axis for
each external-store pitching-moment coefficient, and the @e of attack
of the external store is taken to be the angle of attack of that wing
station within the span of whose horseshoe vortex the station of the
external store lies. Special symbols used in this appendix are as

lift and pitching-moment coefficients, respectively, of an
external store measured at its aerodynamic center (see
eqs. (Dl))

lift and pitching-moment coefficients, respectively, of an
external store at zero angle of attack measured at its
aerodynamic center

lift and pitching moment, respectively, of an external store
measured at its aerodynmnic center (see eqs. (D2))

rolXnn moment at elastic-axis point around longitudinal
axis through local e~stic-axis point due to loads on a
particular store outboard of this point, positive when
it tends to raise left wing tip, in-lb

pitching moment at elastic-axis reference point around
lateral @s through this reference point and due to
loads on a particular store outboard of this point,
positive when it tends to raise nose, in-lb

Additional symbols required are shown in the foil.ming sketch:
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Aerodynamic center
of external store

E

I/

“’7”+
t

Forward

W+2

%+1

e+l

.

Consider one -ernal store whose characteristicsare

% =%0+ (%).%1%=%0+ (%l@E “

so that

(Dl)

(D2)

-——— . .—, ~ .—,— ——,. .. ... ‘. .:.. .. . . . . ,> .,.+. .=~ T--T--, - ~ —--—.
,’,. .,. . . . . . . +. ..’..’,-‘,’ :, ...’... . .. . . . ., .,,
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The Idft and moment on the external store. %0 ~d ~o me located
with respect to point e by the dimensions ye and xc as shuwn in
the sketch.

At the first station inboard of the external store ~,

VxE= %OYG

‘ ZEO(YE Cos & - xE sin &) - ~o sin &

=LEO(Ye sin& + x~ cos A~) + MO cos &

(D3)

(D4)

At the next inbosrd station e + 1,

%+1 = 1
LEO~Y~ + de)cos &+l - (XE - f~)sin~+l - ~o sin&+l (IYj)

[ 1Te+l= %0 (Yc + de)sfi Ae+l + (x~ - f~)cos AE+l + %0 cos Ae+l (D6)

——-..-.-—.-.-— ~--— ----- —— . ,,.—— —.—.
,.. ...!..,, . . . ,. ..” .’.-

—
... .. . .

,.. ,. .!. . ...,. . . .
‘. . ...’ .,, .

. . . . ...
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At station ~ + 2,

% ~+2=LEO(Y~+d~ +de+l)

MY~+2 “%0 + %0(% - fE - fe+l)

NACATM 3030

.

[
%+-2= %() (YE + de + de+l)cos *+2 - (XE - f~ - fe+l)sin *+2 -

J

%0 s~ %+2 (D7)

Te+2
[ 1

‘LEO (Yc + de + d~+l)sin &+2 + (xc - fe - fe+l)cos &+2 +

%0 COB %+2 (D8)

At station n, the most inboard station considered,

wn =
( ).

!Eo Y.+~l’%
W-G

Since
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then,

‘n=LEO~nAnf.+~ ‘I)+cos%($-~ ‘m~+%OcOsAn

(D1O)

b matrix notation, the following eqwtions, typical for each
external store on the semispan, are equivalent to the algebraic eqW-
tions (D9) and (D1O):

where, if the value at the top of the column is for the tip and the
other values are for the successive stations inboard to the root and
e is the station within whose horseshoe span the external store is
located,

[1

o
0
0

{}
R= Ye

Ye + de
y~ + de + de+l

Ye + % + %+1 + %+2

.

(D13)

. . ..—.~—-,—. — .y--- ~~.- —--. — — , .—— —,. —— -——-—-
,.. .: .... . . .. .. . .. .,’ . . . . .. . . .,., -..: ‘, ,, ...,.. . . . . ..-

.,..
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{}
u=

[]

o
0

{}

o
IE=l

1
1
.

H
o
0

M“

%+1
%+2
.

H
o
0
0

TG

TE+l

Te+2

.

From equation (B33)

(D14)

(D15)

(D17)
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where the external-store bending moment and torsion are given by equa-
tions (Dll) and (D12), respectively.

Substitution ~f equations (D2) into equations (Dll) and (D12) leads
to:

then equations (D19.)and (IWO) become

{%} = @’&2J%Eo +

-1

(D19)

(D20)

(D21)

(D22)

-—. ——.— .——.—, —.-—--,-- . . ~ —————..———
. .’.”.’.-.

,, ,
,., -

,“. . ?,. . . . .. ,”, .-, :..
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{%] =+%1}%%+&T}($L&.%E + G O@}mqo +

Now let

and

lx Al{%}yc%)aw.}

then

{bEquation (D18) relating us

written as

(D2k)

(D25)

(D26)

(D~)

(D28)
.

(W)
>

{ Y’f}‘WE (D30)

with {%} {}
and ~ can now be

(D31)
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The eqyations just derived are typical for a single external store
on the Semispan. Each additional external store on the semispan requires
a similar set of equations.

The total angle-of-attack change dti to the wing airloads shear and
the airload on the external store is

p-j = {~s}w+{qE (“33)

where the subscript W denotes wing and E denotes external store.

{}
Here there is an as term on the right-hand side for each exter-

E
nal Storej that is,

(“34)

repeated for convenience are
o

{%} = {~}+ p.}+ PSI
p’]{’} = {~}w
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Including the effects of external stores on as
{}

according to

equations (D34) yields

o

[*]WI = {!%1+ h] + hhl’ t%}.,+ h]., + ● ● ● ‘D35)

From equation (D31)

{“s},, = PI},”+ {%},’%,

{%}E, = {’n,@ + {K&%,, 1
However, wlJ can be found from

CW% = L%]{w}

where a typical value for L%j is given by

LIiJ=~OOIOOOOOOJ

(D36)

(D37)

(D38)

The row matrix L%j has as msmy columns as there are horseshoe

vortices on the semispan snd has a value of unity entered in the column
which corresponds to that horseshoe within whose span the efiernal store
is located. (~ the example implied in eq. (D38) there are ten stations
and the external store n is
from the left wing tip.)

Cmibining equations (12)

q= =

within the span of the fourth horseshoe

and (D37) results in

o

(D39)

.
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Combining equtions (D35), (D36), (D39), aid “(B38)yields

[+$%]{z}={%}+{~.}+~2]{z}+

L 1-

Iet

0~nq42’’+”””

[q ={K2}.P9! {~} = ‘Ml

(M-o)

(lMl)

(D42)

H equations (D41) snd (D42) are substituted into equation (@l-O),
the following matrix eqwtion is obtained for an elastic wing having a
nuniberof external stores on the semispan:

This eauation is shnilar in inmortance md Uef-ss to equa-
tion (16) e~cept that the aeroelast~c effects of the airloads ~-on the
externfilstores are now included. It reduces to equation (16) if .dl .

0
t~ [A] anti {B} matrices are set eq~ to zero, since [I] = [1-.o].

—--. ——--—--r -.— ------- . . —- —-. ——.—— –.—
.,. ,, -.

,. i
.-

. . . .
, .. ’,... . . .. . . -:, . . . . . . .’.



WING-FUSELAGE INmmmmm

80

APPENDIX E
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ti this appendix an approximate method of calculating the effect
of a fuselage on the spanwise airload distribution on the wing is devel-
oped. The primary sources of this interference are considered (ref. 16)
to be as follows:

(1) The effects of the image vortex sfitem inside the fuselage on
the downwash angles at the various control potits over the wing semispan.
This image vortex system induces a flow which is a first approximation
to that necessary to satisfy the condition that there be zero velocity
normal to the fuselage.

(2) The effects of the vertical “overvelocities”resulting from the
fuselage angle of attack. These velocity increments affect the local
angle of attack at the various control points on the wing.

This method of analysis canbe used when applicable data of the type
described in appendix G sre not available.

Item (1) maybe considered as the effects of wing airloads upon
themselves due to the presence of the fuselage; whereas item (2) accounts
for the effects resulting from the fuselage having an anglecof attack.

In the development that fo120ws the fuselage is assumed to be of
circular cross section, of constant diameter, and infinitely long.

For the image vortex system mentioned in item (l).,the individual
images of the wing trailing vortices canbe shown to be located on a
straight line joidmg the axis of the fuselage with the axis of the par-
ticular wing trailing vortex at a distance from the fuselage center line
such that

(El)

where a is the fuselage radius and ‘1
is the distance from the fuse-

lage axis to the trailing mrtex (see fig. 6).

In similar fashion the bound vortex is assumed to have an image
within the fuselage cross section. The hage of the bound vortex is

. . .. . . . .. .. ..... .,. .<—-—- . —
-,-.-n--:....~~..+,,.” -. . . . . “,. + <“..”+,.,,..;. .- . ...’..,. . “.,: -.,, .- ..’- . .. . . . . . . ,, -..,,,.- ,3.....-.’ ~.. a...’:.. “, ,, .:.... .. . .
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assumed to lie on a straight line joining the forwsrd ends of the image
trailing vortices. The forwsrd ends of these image trailing vortices
are assumed to lie in the ssme transverse plime (perpendicular to the
airplsne center line) that contains the particular bound vortex being
represented. Figure 6(a) shows a trs.nsversesection for the high-midwing
configuration and figure 6(b) shows a plan view for the midwing
configuration.

This system of real and image vortices is only an approximation.
It satisfies the condition of no flow across the fuselage boundary only
at the transverse plane containing a bound vortex and its image and the.
transverse plane infinitely fsr behind the wing. In general, some flow
will occur across the fuselage boundaries, and hence, to some degree at
least, the corrective downwash velocities induced at the wing control
points by the image vortices willbe in error.

Within these limitations it is therefore considered that wing-
fuselage interference effects upon the wing spanwise airload distribu-
tion can be obtained by:

(1) Adding to the elements of the S1
[1

matrix for the e~sed wing

a corrective matrix
[1
ST whose elements represent the vertical downwash

velocities induced at the various wing horseshoe control points by the
hage vortex system within the fuselage boundaries.

Each imsge vortex within the fuselage is of the same strength and
sense of circulation as its real counterpart and there are as many image
horseshoe vortices within the fuselage as we used to represent the wing.

( -‘~ ~})(2) Adding to the twist of the wing i e a correction due

to the vertical overvelocity field arisi.ng’from the effects of fuselage

angle of attack. The correction applied to
{1‘g

is proportional to

the quantity (~ - ~) where ~ is the singleof attack of the wing

root-section zero-lift line and ai is the incidence angle between the

vdng root-section zero-lift We and the fuselage center line.

‘Theabove corrections sre developed as follows.

y---- --:~~:– -—-—T- —7-—-— --—.——- ,
———— —

. .,,. ,..-...,. ., ,-. , ... .,.- .-.
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[1
corrective matrix Si may be derived by con-

the following sketch:

f z (up)
/

The horseshoe vortex shown in this sketch is considered to be one
of the -e vortices, the tication of which is given by equation (El).
The strength of circulation r of this -e vortex is equal to that

of its real counterpart. The plane of the horseshoe @a@ is at an

angle 7 to the horizontal plane Ogie and the bound vortex
% lies

in the plane Omhg. The point k maybe considered to be one of the

downwash control points as described in a~endix A.

The total.vertical downwash wk at the point k due to this image

horseshoe vortex is the sum of the contribution due to each segment. By
means of equation (A27) the contribution of the trailing vortex ~ is

H+Cos ~Y’ )-HCOS7
w_ = —
~~B B

(E2)
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that due to the trailing vortex ~ is

and that due to the houud vortex ~ is

( Nrcosfr-co se<
TT_=—

ab 4YC D D

where

A= a 1

(E3)

(E4)

(E5)

I?Yomthe geometry of the sketch the distances A, B, and D ae found
from

(A2 = Sy’ )(
2

)]
2

+HCOS7 + sz’+Hsin7

(B2 = Sy’
)(

2
)-H COS7 + sz’+Hsin7
2

(
D2 = SX’2 + Sy’ )

2
sin 7 - Sz’ Cos 7

1
and the angles are obtained from

7

(E6)

e’ = tan-’== tall-’ , ~06 y ,:

E ‘Y z‘sin 7-H

—

F = tal-l == taa-l
D

% ‘Y
‘cos7+sz’sin7+H

—

p = tan-l -= tall-l +-

6i ‘x

— ~.. .,. .—,–— —=—,,— —--F7~-:- ———
——.———— ———

,. -.. . . . .
~. .-’.. “.,, .,. ,. -.’, ., ./” ..”

..” .<<. .,. ,. . .,
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Summing the individual dmmwash’contributions (eqs. (E2), (E3), and
(~) ) gives the total downwash at k due to one image horseshoe

wk

The
fuselage

in which

J’_ 1(
Sy’ +H COS 7)(1+ COS ~) )Cos $’ - Cos e’ Sx’

+
4fll_ A2

D’

‘Y’ )(-H COS71+COSX
)

B’
(E8)

downwash angles at the control points on the wing due to the
images may then be written in matrix notation as

~}i = &lEd{r}=&-J{2} (E9)

the desired correction matrix for -e vortex effects is r7SiJ
the elements of”which are the locslUy applicable values of the funct;o;
inside the brackets of equation (E8). ‘Zhedevelopment for antisynmetrical
conditions would be anslogous to that for symmetrical conditions, the only
change be~ that the sense of the vortices (and their hages) on the
left-hand side of the plane of symmetry in figure 6 wouldbe reversed.

The second interference effect, that due to vertical overvelocit~.
may be
to the
stream

taken into account as shown & the following analysis: With r~~pect
fuselage center line there is a transverse component of the free-
velocity Vz, givenby (see sketch)

‘z ‘ ‘(~ -‘4

.

%
v----- .-

Since the fuselage displaces the air in this transverse flow field, there
are local changes in this vertical flow velocity.

If Vz’ is equal to the total local vertical velocity in the pres-

ence of the fuselage, then the overvelocity AVZ is
.

AVZ =Vz’ -Vz (EIO)
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This vertical overvelocity can be expressed as

ATZ =
?’(* -~)

(F@

z

Contour maps from which the value of AVz/Vz can be obtained as a

function of vertical and lateral distances from the body center line me
shown in figure 7.

The8e contours were developed from the equations for uniform flow
past an infinitely long circular cylinder from reference 17 as follows:

v= ‘ () A+z
=vzl+—

v~
(E12)

Vz ‘
—= 1 + a2cos 2e (~3)
Vz R2

where a is the cylinder radius, R is the radial distance from the
axis, and e is measured from a line normal
Thus

AVZ a2cos 28—=
Vz R2

from equation (En) the angle-of-attack

point due to the local over-velocitybecomes

to the axis and Vz.

(E14)

increment La.g at a control

(E15)

Equation (E15) in matrix notation is

{j+ = NJ{%-%} (E16)

where ~~] is a diagonal matrix whose elements are the locally appli-
cable values of’ AVz/Vz; that is,

A~z

[1 []
s:=—

Vz
(E17)

— —,— -T ..— ______ _

. ...”. ,.-..,,,, , .’. . --,’.”-’.. ‘,. ”.’...’:;.’.’ .. .
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By use of the matrices

rsd downwash.matrix given by equation (A38) for the wing alone~ -d
(the portion of thewingoutbosrdof the fuselage)

[1‘2
wing elasticity matrix given by equation (B37)

c1‘f
hage-vortex matrti given by equation (Eg)

[1
s: overvelocity matrix given by equation (E17)

and the equation

the equation for wing equilibria ficluding
can be written as

fuselage-interferenceeffects

(E18)

or, in a more convenient form,

Equation (E19) may be substittied without change for equation (21) for
the wing load distribution.
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EQUfWIONSFQR TMXGIISS~ TAIL-BOCM
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CONFIGURATIONS

This appendix develops eqyations whi~, when properly inserted tito
the basic equations, Wow solution for (1) a tailless airplane and
(2) anamlsmetith tie tail load enterm the- structure through
tail booms. The equations are left in general form. Constant sweep
angles and equal vortex spacing s~lify the equations considerably.

Tailless Airplane

For the case of a tailless airplane longitudinal balance is usually
accomplished by the deflection of controls on the wing. These control
deflections alter the span load distribution over the ~ while con-
tributing to the balance of the airplane, and therefore terms expressed
as functions of the.control deflection b will a~ear in the lift-
distribution equation (eq. (2)-))and the pitching-moment balance equa-
tion (eq. (23)) in place of the ~ terms. Since the lift producedby

the control deflection is part of the ~ lift, ~ in the lift balance

equation (eq. (22)) wSJJ be zero.

The development of expressions in terms of the control deflection
follows.

The required expression for 5 tobe substituted into equation (~)

consists of two ag components; agI)
which is the apparent twist due to

control deflection, and O&nj which is the twist due to section pitching

moment with control deflected. From equation (C2)

p=]cm=[.l[&]~@lcm+ [tl[&]~]P}% ‘F’)

For class II twists due to section pitching-moment coefficient
(type (f) in appentix C), the following equations may be written for

{1M Cm {1
and Tcm in equation (Fl):

(F2)

(F3)

__—.= - . . ~ ..—. —-—- —— ———-. . . . . . . .,,.. . . . ,.. . .. . .
. . ,,<, .:. . .,.-;. ,.
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where
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13 =

1/2

1

1

1

.

.

0 0 0.:

1/2 o 0..

1 1/2 o..

1 1 1/2 . .

. . . . .

. . . . .

For ~1 and [t] in equation (Fl), equatio~ (B%) E@ (B35) W be

where

0

0

.

.
—

1

l/2

o

0

.

.

1

1

l/2

o

.

.

1

1

1

1/2

.

.

(F4)

(F5)

—

● ✎

✎ ✎

✎ ✎

✎ ✎

✎ ✎

✎ ✎

�

Substituting equations (F2), (F3), (F4), and (F5) ~to e~tion (Fl) ~el~

L
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or

89

-p-+m=m~ ~Ea&] + &]E: q~aicg{%) (F6)

Equation (F6) gives the structural twist due to control deflection. If

~-tunnel data are not available, theoretical expressions for (%}

in terms of the deflection b may be used. l?romreference 18,

where

{~), = - $~ti ,0 ; sin ‘eJ{,)

e. = sin-l~~m]

00 = CoS-l(’g - 1)

Cf
kc=—

and cf is the flap chord. ~~stituttig these values for (30 results in

o

= [1-2 {-3 {b) (F7)

The ~1 termreqyired can be obtained from the following expres-

sion for the lift produced by control deflection (ref. 18):

@b=2E 0 m-eo+sineob

for a two-dimensional lif’t-c~e slope of 2YC. For a
lift~curve slope of ~, this equation canbe written

two-dimensional
as

..
-Ay-r-.--~-

..’, -, ... . .= —---~ ———— ———-————.-
. . . . . ,~-. ... .”, . .
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SUbstituttig the values for e. results in

Dividing both sides by [I] @elds

(F8)

(F9)

The total ~ term to be substituted for the PT term in the lift-

distribution equation is obtained by combining equations (F6), (n), and
(F9), to give -

Pi]c. = -p.,jcm+p.j% .

(F1O)

For the pitching-moment balance equation (23) the expression required
to replace ~ may be obtained from the theoretical expression for flap

pitching-moment coefficient (eq. (~)) as

(Fll)

‘Sincein the system of equations given in matrix form (eqs. (21),
(22), and (23)) there are two unhowns other than PT, it would not be
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possible to have more than one unknown h the expression to be substituted

(}
for ~; in other words, the b matrix in equations (FIO).and (Fll) must.

have a lmown distribution shape.

deflection; the {b] matrix may

{}

& is any chosen distribution
br

Let br be the unknown reference—

thenbe written as
{’} = ‘r{&} ‘here

shape. For the reference deflection at

the second station from the tip this equation becomes

bl~r
1.0

63~r

.

%ootpr

Fdr a constant deflection across the span, the distribution matrix

becomes

For

{}
1.

Balancing !l%ilLoad Entering Wing Through Tail Boom

the case where the tail load enters the wing structure through
a tail boom, the distribution of load over the wing will be affected -
when the tail load changes and will vary in a different way depending on

where the tail boom enters the wing. An expression to be substituted into

\ the lift-distribution equation (21) for ~[0~ is developed in this sec-

tion

tail

L>

of the appendix.

l?romfigure 8, the beamwise moment produced at the point P by the
load entering the wing through the tail boom c=be-

where & is the sweep angle of

of the tail boom.

the elastic axis at the

written as

%1

Cos ~

entry sOction

. .. .. .—-. .—. .-. -——, _ - ———,. . . ,,, ?.. . .-., ..- .,, ,--. ,
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h matrixform

@“!!% =% f][&]~T} + ~(~ ‘h % + y, Cos %){%} (FM)

where ~2]~ {%}, and ~~d for six reference stations are defined as

[112 =

50 0 0 0 6-

1 0 0000

1 1 0000

1 1 1 000

L1 1 1 1 0 0

1 1 1 1 1 0

o Tip

II

o

0

1 -Tail-boom

1

1 Root

entry

o 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 de+l

o 0 0 0 0

point

o

0

0

0

0
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The eqp.ationfor torque is

{h
T=

T - %(% co’ % - YP ‘h %){%}

93

(F13)

Substitution of equations (F4), (F5), (F12), and (F13) into equa-
tion (C2) gives an expression for the class II twist due to tail-boom
entW:

o

( ) ] [1(
eTsti~+ypcosAg7[I] - & eTcos~

)1
- Yp dn ~ [1] {%}

-J

The colum to be sfistituted into equation (21) is therefore

[

- Nw!l [! @i] p qjj] +

—

This column will be multiplied by PT in equation
and (23) remain unchanged for this configuration.

J

(21). Equations (22)
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METHOD OF

APPENDIX G

REDUC~G m-~ DAW

Difficulty is usually experienced in applying data obtained from
wind-tunnel tests to the design of a full-scale airplane, especially in
those cases where of necessi~ the stiffness of the model differs from
that of the full-scale airplane. The purpose of this appendix is to pre-
sent a method of analysis by which model flexibility effects may be
removed from the aerodynamic coefficients.

Description of method.- The method utilizes equation (U), which is

where

{~} ‘ {PJ+k]+h}}
{}When equation (l&?)is used for computing the lift distribution Z

for a given full-scale airplane of any given flexibility, the
[1
S1 and

[J%?
matrices used depend only on the particular configuration and the

&iv& flight conditions, except for certain aerodynamic-twist components

of the
{}‘.

titrix (seeappendix C). There rsmain to be selected, then,
o

applicable values for these
‘. [1components and for the m. matrti.

These values may be determined with suitable data frcnnwind-tunnel tests
of a scaled model in conjunction with equation (1.2)as it applies to the
model.

The approach taken is usually applicable and is based on the assump-
tion that the following data are available from wind-tunnel tests of the
model: (a) the spanwise variation of the section normal-force coefficiept
obtained from integration of pressure data and (b) spanwise variation of
section chord-line angle of attack with free-stresm direction obtained from
model deflection data. These data should be available for each of several
root-section angles of attack and at each of several Mach numbers over the
essentially linear range of section lift coefficient.
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A downwash matrix
[1
S1 for the model should be computed according

to procedures of appendix A. In general the horseshoe system should be
identical with that which will be used in determination of the airload
distribution on the full-scale airplane. The matrix for the model [1

S1 ~

will then be equal to the reciprocal of the model scale factor times the

ElS1 matrix for the full-scale airplane, where the model scale factor is

equal.to the model span divided by the full-scale span.

The final angle-of-attackmatrix for the model may be written as

{4= {{~}+-F’J1a+t%}.}+tikb

where

{1
%

=
{}
a mess {J+ ag Ib

angle of attack,of root section with undisturbed stream
(measureil)

(Gl)

{1‘g ~a
built-in twist (hOWIl)

{1a‘M twist due to model flexibili~ (measured)

{}
agIb

interference twist due to aerodynamic interference effects of
neighboring bodies (fuselage,nacellesj external storesY etc.)
upon the wing (um.lmown)

{}
a sum of measured or known values
mess

Equation (12) for the nmdel then becomes

(G2)

{3Since measured values of Z are used, equation (G2) represents a
system of independent equations (one for each reference spanwise station
of the model) which do not require a stiultaneous solution.

—., ,>. .,———. . .—— ——— ——
-, . ... . ..,- ,.. .,. ... . ,- ..-,,, .. . ,: .-. .~ .. .. . . .
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{}
lf % ~b

is assumed to be invariant with change in wing angle of

attack, the following matrices may be computed from data taken at two
clifferent root-section angles of attack:

-- -. . .
(G3)

The matrices
[+/ {1

and AZ may

{}
and2 in equation G2), since the term

t)ag ~b
has been eliminated,

{1
and the applicable values of m. can be computed from

{1
‘1

(G4)

{}
be substituted for a mea~

r>

{~} = [&]hlMt4 (G5)

The interference twist
{1
ag Ib

may now be computed from equation (G2)

{1
by using the values of ~ computed fran equation (G5) and the values of

measured at any root-section angle of attack, for exam-

~%l{~mt~lmas”

The foregoing procedure indicates the simplest solution for the con-
stants in the straight-line equations given by equations (G2). If desired,
equations (G2) may each be solved somewhat more accurately for ~

{1

{1
and

ag Ib
by a least-squares procedure which utilizes values of ‘1

{)

{1
and a ~as taken at several values of root-section angles of attack.

If the interference twist a
gIb

at any section is ass’umedto include

a component that varies with change in some section chord-line angle of
attack, the method is still applicable to a close approximation. In this

case the variable interference effects will appear implicitly in ~ .
{1

The approximation arises from the assmption (implied in the above
solution) that for a body at some spanwise station j there exists an
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interference twist at some other station i which is proportional to the”
change in geometric angle at i; whereas in actuali~ the interference
twist at station i is proportional to change in geometric angle at the
body station j.

Justification for the assumption can be shown as follows. Denote
interference twist by ~, and the measured section chord-line angles at

stations i and j by ai and

due to the body at station j is
a variable twist

aj. Interference twist at station i

written as the am of a constant plus

(%c)i=(’%o)‘%%i

‘h=e ‘ij
is the proportionality constant. The final angle of attack

at station i then is

()(a’f)i=% +kij”j+ ~
Oi

and equation (G2) for the spanwise station i is
.

& l?di {’1 = ~ f’i ‘%,a, +(%o)i)
However,

therefore,

* Mi PI =%((’+%)f%%(%++(%o)i)‘w)
The middle term is small compared to the first term and maybe neglected

since, for station i close to station j, the difference a - Ui is
J

negligible, and for station i far from station j the interference

-. —-———. . ..— _ >-r-.—-———————. ~ — —~—- _ .—. ———— —

.

—

-.-’
. . . . ..$’ ,., . .,’,.,:,. .’. ..,.. ., . . .
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effect and therefore
equation (G6) %ecome8
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k is negligible. If the middle term is neglect6d,
equivalent to equation (G2) and the factor

l+qj is apparent in the values of ~ computed by eqpation (G5)

even though it does not appear explicitly; that is, ~ comput~ by

equation (G5) is equal to the term mi(l + kij) in equation (G6).

Although only interference twist was considered in the foregoing
description, the method is obviously applicable for determining other
aerodynamic twists (see appendix C), for exsmple, that due to flap
deflection.

The foregoing method of analyzing data is relatively simple and
straightforward and ,hasthe following advantages over other currently
available methods:

(1) It provides a means by which data obtained from wind-tunnel tests
of a properly tistrumented elastic model wing can be evaluated for appli-
cation to a full-scale wing of different elasticity distribution.

(2) It evaluates the variation of effective section lift-curve slope
and of aerodynamic twist across the span as influenced by the presence of
the fuselage, the nacelles, and other bodies on or near the wing (these
obviously include spoilers, ailerons, and flaps).

(3) It de~-s We ~er h which sectionlift-curveslopevmies ,
with Mach number.

Although the variation of lift-curve slope with Mach number can be
obtained by the foregoing method by using wind-tunnel data at various
l&ch numbers, it is sometimes desired to determine the change (or changes)
in lift distribution for section configurations for which suitable wind-
tunnel data sre not available, for example, variation of section lift
with flap deflection %5 “

If the incompressible value of cz~ can be obtained or estimated
by some means (e.g., from tests for the flap deflected at some other sta-
tion) and if the effective sweep angle at the new flap station is lnmwn,
then compressible values of cz~ can be obtained by substituting the

Cz~ values for the section lift-curve slopes in equation (A39)

m= m
o

il -M’2cos2~

where

curve

~ and m are the compressible and incompressible section lift-

slopes, respectively.
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It is therefore advantageous to evaluate the spanwise variation of
~. The effective sweep angle for each section can be obtained from

equation (A39) by using the previously measured variation of ~ with

Mach number. For example, equation (A39) can be rewritten as the linear
equation (+inear in squared terms)

(“2)(+)+p’%)(”’)=‘-

This equation can be solved for m and ~ by a least-squares procedure

if a series of equations are formed by substituting the values of ~
and M obtained for each of several Mach numbers.

Alternatively, a solution for m and AM can be obtsined by a
graphical procedure (ref. 19). Plot the variation of ~ with M in
a fashion such that the abscissa (M-scale) is proportional to the fac-

kor ~/{~-M?c0,2AM. ~The plotted points will fall on a straight Mne

which passes through the pole ~ = O, l/’& - M’COS2AM = O), provided
AM is correctly chosen and the law (eq. (A39)) applies. Note that

/1~= 1.0 when M = O. A form is presented in figure 9 by

which the ~ values can be conveniently plotted on such an abscissa
scale for each of a nuniberof values of AM. For example, if a value
of AM is tentatively chosen as AM = 30°, draw a horizontal llne inter-
secting the right-hand ordinate at 30°. The intersections of this hori-
zontal l.ine.withthe Mch number Mnes are the abscissa locations for
the indicated discrete values of M. Values of ~ we then appro-
priately plotted verticaUy above or below these intersections. The
intersection of this horizontal tine with the pole-distance curve gives
the pole location in scale units to the left of the abscissa point M = O.
The desired value of AM is then the one which gives the most nesrly
linear vsxiation of the-plotted data with consideration given to the
pole point. The desired m is the value of the intercept at M equal
to zero.

Illustrative example.- This section
tunnel data obtained on a flexible model
section lift-curve slopes {%} .

presents an analysis of wind-
to determine the compressible

The model was awing-fuselage configurationwith nacelles mounted
below and forward of the wing on sweptforward struts attached to the wing
Semispan stations q = 0.37 and 0.65. The wlnghad the following addi-
tional pertinent physical characteristics:

Aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . .8.55
Taper ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.40
Sweep atquarter-chord line, deg . . . . . . . . . . . . . . . . . . 35

and the locus of aerodynamic centers was assumed to coincide with the
quarter-chord line.

.-–— .-.~.— —-
..

.“ ,. ‘ ,.’- ,’;. . . . . . . .
:. . ...,-’. ‘.. :,. .-. ”....’ -’. ,. .
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The model wing was instrumented
surface of the wing steel spar along

NACA TN 3030

with strain gages cemented to the
one semispan and with pressure

orifices located along stresmwise chord sections on the opposite semi-
span at stations q = 0.155, 0.35,0.56,0.75,.@ 0.92.

Tests were made at root-section angles of attack of 0° and 6° for
Mach numbers 0.30, 0.50, 0.70, 0.75, and O.80.

The spanwise variation in section angle of attick for each test con-
dition was obtained:from the root-section angles of attack in conjunctioti
with strain-gage readings. The spanwise variation in section normal-force
coefficient for each test condition was obtained by a spanwise fairing of

various local integrated chordwise pressure distrib~tions.

Elements of the
[1‘1

matiix were computed for

0.10, 0.30, 0.50, 0.70, 0.85, 0.925, and 0.975.

I
o.lk869-0.W630 -0.0U49 -0.0C482-0.00149

-0.@08.$ 0.148u -0.05547 -0.00793 -0.00188

-0.00287 -0.0E60 0.07827-0.02713 -0.00285

[1
sl . -0.00042 -o.o@8 -o.o@26 o.@382 -0.0U09

-0.00013 -o.om17 -0.00053 -o.o~22 0.04153

-0.00008 -0.00009 -0.00023 -0.00093 -0.0c617

-0.00006 -0.00006 -0.00015 -o.oo~o -0000124

where the columns read down from the tip to the root

wing semispan stations

The resulting matrix

—

-0.00082-0.00063

-0.00094-0.00070

-0.oolzl-0.00084

-0.00229-0.00130

-0.0U43 -0.00287

0.03969-0.013(37

-0.00794 0.02917
A

ad the rows read
across from the tip to the root. For
increments of section geometric angle
in root angle of attack were computed
and tabulated in table I.

Substitution of {A~ = {k~cj
equation (1.2) gives

l%ese same stations ~c/4 and
of attack h due to the 6° change
from data at each test Mach number

[}
for Z and {b} for {q} in

~i-}Mfy”=[3@}
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0

[1
from which the values ~ were computid and tabulated in table I.

Values of ~ for q = 0.975 are not shown since m. is very sensitive

to the manner in which the spanwise variation of ~ is faired in the

region of the wing tip. These values for each wing station me plotted
against Mach number in figure 10(a).

Since the
[1
S1 matrix is based upon the ‘Wng alone” configuration,

the body interference effects which vary with body angle of attack will
be apparent in the values of
stations near the wing root.

It was assumed that the

for these data. Accordingly

lift-curve slope particularly for those

Prandtl-Glauert relationship was applicable

the [~~ values were plotted (by using a
L -d

—

form similar to that shown in fig. 9) for various selected values of ~.

The plots which yielded the most nearly linear variation of the data
are reproduced in figure (lO(b) for each span station. In selecting the
plot which gave the most linear variation of ~, considerationwas given

to the fact that at very low h&h numbers (approx. 0.30) the value of m.
could be sffected by Reynolds number; whereas those obtained for high
lkch numbers would reflect the effects of shocks, and so forth. These
points were therefore given less weight in determining the best fit.

Plots showing the spanwise variation of effective section sweep
angle ~ and lift-curve slope m are given in figure 11.

.. . .. .. .. ~.+ ._—.. . —y,- . . -.
:,, y ——-————-. ... .. . . .

.,,’ .,, . .. -”.” ----- . . . .. . ,., -.. .. ,.: ,..
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APPENDIX H

CALCULATION OF THE DIVERGENCE DYNWCmsm

Although the sweptback wing is usually considered to be divergence-
free, it is conceivable that, with a Wge external diverging torque
such as may be contributed by a tip tsak, the wing could diverge. This
appendix is concerned with the calculation of the dynamic pressure at
@ich divergence will occur.

An expression for the static lift on a flexible swept wing with an
external tank has been derived in appendix D and, for a divergence inves-
tigation, may be written as fOllOWs:

~1-@FjW[%l -Pi

L
—

—

This is a matrix eqmtion in which the elements

p}=p,$ m)

in the column represent
the lifts on the v&ious spanwise se~nts of the wing.
can be found from equation (Hi) by multiplying the l~t

by the row matrix I2hl where 2h defines the segnent
LA

spanwise direction. Then

r

or

The totsl lift
per unit spsn

width in the

(m)

L

Equation (H2) represents the lift on a wing in static e@librium.
Under the condition of wing divergence the equilibrium wing lift would
be infinite.
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The divergence -speedis then represented by the lowest value of q
for which the lift in equation (H,) becomes infinite. For the right-
hsnd side to be infinite, the determinant of the matrix whose inverse
is given in eqution (E!) must be zero, or

which can be written in the form

The procedu is to solve for the lowest value of q
equation (u). ltromthe Cayley-Hamilton theorem, the
modulus root A in the equation

may be found by iterating

msy be put in the form of

The result is

o

1

AII] - [D] = [01

r-l

o (m)

which satisfies
dominant or highest

Uthe matrix D . In this case equation

eq.urbion(H4) by multiplying through by

1-

-lr o 1.

(H4)

(m)

(m)

-—..- _.._—. —-T.. ---- -,-—
.— ———- ——— ---— -—

. . . .
;. ...; ,

“., ,.- ~...,., ., ..,.. ‘,.
.. ”.,

. .. . . . .. . . . . . .,. .--’” ..- -
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Now A = *; therefore, iteration of the matrix product

[1]

o -1

[1t ‘1 [1S1 +
[1
S2

wKU @eIii the lowest v&Lue of q, which in this case is the desired
divergence d.ynmdc pressure. -

The theory of matrix iteration may be found in reference 20; however,
a simple outline of the steps required to iterate the matrix product (H6)
to obtain the divergence dynamic pressure is given here. First a trial
column is chosen and this column is premultiplied by matrix (H6) to
obtain a result colmn. The elements of this result column axe divided
by the hst element of the result column and then become the elements of
a second trial column (the last element will be unity, having been
divided by itseM ). ~ second trial column is then pmmul.tiplied by
matrix (H6) to yield a second result column. This procedure is repeated
until the same value is obtained for the last element in two successive
result matrices. The reciprocal of this value is the desired divergence
-C pressure q.

.—— ——>... ..~ ——.,. ..~ . —-—— -—-.–— -.– —-–
,., -.. ...’ ., .-.”.’.,, ... . ..- .“, . . . .’ -”’, ,, =.. -, ...’ ,.

.

,. ..”, .-, . -’, -,.!, . .. . . . . . .“.
.:. -..

.,, .>
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TABLE I.- MMSURED DATA AND RESULTING SECTION IiC?T-CURVE@OPES FOR

WIND-TUNNEL MODEL OF APPENDIX G

I I M = 0.30

V Acne/4 &L, radians q

I● 975 13.897 0.10135 ----
.92516.966 ,1014Q 4.75
.85 20.775 .I0148 5.41
.70 24.390 .1o217 “4.83
.W 30.490 ;K#: 5.84
.30 36.U2 6.97
.10 37.485 .10455 7.19

M= O.y

Lu, radians ~

13.628
17.460
21.682
27.023
31.658
36.m2
39.490

0.09665
.09672
.09710
.09849
.10097
.10294
.I0424

----

5.08
5.54
5.98
6.25
6.69
7.74

IAz, radians ~

14.358
18.819
22.998
28.903
33.669
38.241
43.587

1
?LCnc/4

I.975 15 ● 510
.92519.684
.85 23.814
.70 29.548
.50 3k.837
● 30 39.077
.10 45.157

~
h, radians ~ Acne/4

0.08972
.08997
.09066
.09316
.09772
● 10137
.10382

---- 15.433
6.59 20.631
6.46 25.492
6.86 31.804
7.15 37.886
7.0042.650
9.09 50.126

I

,
1

M = 0.70

0.091J.7
.09132
.09192
● 09422
.09832
.10177
.10392

----

6.20
6.08
6.~
6.79
6.93
8.72

M = 0.75 M= 0.80 I

0.08762
.08792
.08867
.09152
.09662
.10082
.10382

----

6.97
7.07
7.45
7.83
7*59
10.16

.1



108

/

CZf /
ag

11~
I

+

> I

C2r
Root - section zero’{l— *

x lift Ii ]e
‘<-Undisturbed

=S= ..wind direction
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Figure 3.- Structural skeleton of outboard sections of left wing shown
in plan view.
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Figure 5.- Polar representation of left wing used in development of the

[1
S*‘ matrix.
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Q Airplane
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Fuselage boundary.,<:
I
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at 3c/4 rearward
of leading edge

V* Point “k” at a distance Of

I I image vortex-system

+SY’4

of the transverse I (Note that a boundSx’ rearward straight-line image
plane containing the bound vortex I vortex is used instead of its true shape,
and its image and is on the locus 1 i.e., chord of the arc
of control points. circular arc itself.)

instead of the - .

=S=

(a) Front view of typical vortex-image system (high-midwing configuration).

Figure 6.- Diagram of vortex-im%ge system for a wing-fuselage conibination.
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Figure 6.- Concluded.
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Figure 8.- Diagram of a representative wing-tail-boom combination showing
entry of tail load on to wing structure (d is distance between stations
measured perpendicular to streamline).
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graphical determination of effective section sweep angle ~ for

a known variation of lift-curve slope with lkch nuriber.



16H

llg

Spanwise
Station, m

8 ~0.925

i===?

J==7
8

0 n
6 -

10- )

8 -
u

6 -

4 -

2 -

00 .2 .4 .6 .8
1 , 1

Mach number, M

(a) Linear scale.

.85

.70

.50

.30

.10

1 1 t t 1

0.3 .5 .7.75 .8 .85
M-scale for AM= 17.5°

, , 1 t I

0.3 .5 .7 .75 .8 .85
M-scale far AM= 35°

Pzzz
0.3 .5 .7 .75 .8 .85

M-scale for AM= 35°

1 1 I t 1
0-3 .5 .7 .75 .8 .85

M-scale for AM=35°

0 . n n Q
I

[1 1 I ! I I

o .3 .5 .7 .75 .8 .85
M-scale far AM=58.5°

0

I , , 1 1 , ,

0.3 .5 .7 .75 .8 .8
Mach number, M-scale

for AM=300

(b) Expanded M-scale.

5

Figure 10.- Variation at several semispan stations of section lift-curve
slope with Mach nuniberfor linear scale and expanded M-scale. Wind-
tunnel model of appendix G.
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Figure Il.- Spanwise variation of effective sweep angle ~ and section
lift-curve slope m for wind-tunnel model of appendix G.
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